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GENERAL POTENTIAL THEORY OF ARBITRARY WING SECTIONS

By T. THDODOESBNand I. E. GARMOK

SUMMARY

Thi9 report gioes an exact ireatment of i%eproblem of
determining th 2?dimensimud potential $OW around
wing seetions of any shape. The treatmed h bawd
directly on the solution of thti problem w adoanad Zy
Tlwod%rsenin IV. A. 0. A. Technical Report No. 411.
2%8probliwncunden8esinio the compactform of an inte-
gral eguaiian cupable of yidding numeriud ~olutimwby
a direztprocess.

An attempt hus bek made to andyie and coordinate
the reswhsof edier studies rekiing to properties of wing
sectti. L!7uexisting approximate theory of thin wing
sectimw and the Jowkowsky theory with tk3 numeixw
genmo%zutti are redwxd to qwcial cases of the general
theory of arbitrary sections,permtlting a c-leazerperspec-
tive of tlw eniire$&. % methodnot Ody peT’m~8the
akterminutionof the w?ocity at any poini of an arbitrary
sedim and theas80ciaM lift and moments, bdfurnid.es
also a schenu for developing new shupa of preamigned
aerod~ynamicalproperties. T& theory applies &o to
bodies that are not airfoik, and% of importam in other
branchesof physics inoolwingpoten$iultheory.

INTRODUCI’ION

The solution of the problem of determining the
!Ldinv3neionalpotential flow of a nonviscous incom-
pressible fluid around bodies of arbitrary shape can be
made to depend on a theorem in conformal represen-
tation stated by Riemann almost a century ago,
known as the fundamental theorem of conformal rep-
resentation. This theorem is equivalent to the state-
ment that it is possible to transform the region
bounded by a simple curve into the region bounded by
a circle in such a way that all equipotential lines and
stream lines of the fit region transform respectively
into those of the cticle. The theorem will be stated
more precisely in the body of thiEreport and its sig-
nificance for wing section theory shown+ufEice it at
present to state that if the analytic transformation by
which the one region is transformed conformably into
the region bounded by the circle is known, the poten-
tial field of this region is readily obtained in terms of
the potential field of the circle.

A number of transformations have been found by
means of which it is possible to transform a circle into

a contour resembling an airfoil shape. It is obviously-
true that such theoretid airfoils possess ~0 particular
qualitieswhich make them superior to the types of more
empirical origg. It was probably primarily beeause
of the difficulty encountered in the inveme problem,
viz, the problem of transfomning an akfoil into a
circle (which we shall denote ss the direct process)
that such artificial types came into existence. The
2-dimensional theoretical velocity distribution, or what
is called the flow pattern, is known only for some
special symmetrical bodies and for the particular class
of Joukows@ airfoils and their extensions, the oufi
standing investigatxm 1being Kutt~; Joukowsky, and
von Mises. Although useful in the development of
airfoil theory these theoretical airfoils are based solely
on specifd transformations employing only a small
part of the freedom permittwl in the general csse.
However, they still form the subject of numerous
isolated investigations.

The direet process has been”used in the theory of
thin airfoils with some suoeess. b approximate
theory of thin wing sections applicable only to the
mean camber line has been developed 2 by Mu@ and
Birnbaum, and extended by others. However, a&~
tempts 3 which have been made to solve the general .
case of an arbitrary airfoil by direct processes have
resulted in intricate and practically unmanageable
solutions. Lamb, in his “Hydrodynamics” (reference
1, p. 77), referring to this problem as dependent upon
the determination of the complex caeffitients of a
conformal transformation, stateg: “The d.ifliculty,
however, of determining these coe5cienta so ss to
satisfy given boundary conditions is now so great as
to render this method of very limited application.
Indeed, the determination of the irrotational motion of
a liquid subject h given boundary conditions is a
problem whose exact solution can be effected by direct
processes in only a very few cases. Most of the cases
for which we know the solution have been obtained by
au inverse process; viz, instead of trying to iind a
value of @ or # which eatisfles [the Laplacian] V2@= O
or V~ = O and given boundary conditions, we take
some lmown solution of these differential eauations
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and inquire what boundary conditions it can be made
to satisfy.”

In a report (reference 2) recently published by the
National Adviso~ Committee for Aeronautics a gen-
eral solution employing a direct method was briefly
given. It was shown that the problem could be stated
in a condensed form as an integral equation and also
that it was possible ‘A effect the practical solution of
this equation for the ease of any given airfoil. “ A
formula giving the velocity at any point of the surface
of an arbitrary airfoil was developed. The first part
of the present paper includes the essential develop-
ments of reference 2 and is devoted to a more com-
plete and precise treatment of the method, in particu-
lar with respect to the evaluation of the integral
equation.

In a later part of this paper, a geometric treatment
of arbitrary airfoils, coordinating the results of earlier
investigations, if3 given. Special airfoil types have
also been studied on the basis of the general method
and their relations to arbitrary airfoils have been
analyzed. The solution of the inverse problem of
creating airfoils of special types., in particular, types of
specified aerodynamical properties, is indicated.

It is hoped that this paper will serve as a step
toward the @cation and ultimate simplification of
the theory of the airfoil.

TRANSFORMATIONOF AN ARBITRARYAIRFOILINTO
A CIRCLE

Statement of the p~oblem.—The problem which this
report proposes to treat may be formulated as follows.
Given an arbltmn-yairfoil’ inolined at a specified angle
in a nonviscous incompressible fluid and translated
with uniform velocity V. To determine the theoreti-
cal 2-dimensional veloci@- and pressure distribution at
all points of the surface for all orientations, and to
investigate the properties of the field of flow surround-
ing the airfoil. Also, to determine the important
aerodynamical parameters of the airfoil. Of further
interest, too, is the problem of il.nding shapes with
given aerodymunical properties.

I?rinoiples of the theory of fluid flow.-We shall
iirst bridly recall the lmown basic principles of the
theory of the irrotational flow of n frictionless incom-
pressible fluid in two dimensions. A flow is termed
“2-dimensional” when the motion is the same in all
planes parallel to a deiinite one, say W. k this ease
the linear velocity components u and u of a fluid
element me functions of z, y, and i only.

The dMerential equation of the lines of flow in this
case is

vdx-udy=o

4 By an afrtotl abam or wing &on, is roughly -t an elongated smwth slqm
rmndoda ttbaleadinge dgaandendfng fnasbnrp w.lgeattbemar. Af.lpractiml

airfoils are chracterimd by a lack cdabrnpt change of ccmatnra oxmpt for a rormded
nm and a small radius of cm’vatrrre at the tafl.
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and the equation of continuity is

which shows “that the above first equation is an exact
differential.

If Q= c is the integral, then

This function Q is oalled the stream function, cmd
the lines of flow, or atrenmlines, are given by the equn-
tion Q= c, where c is in general an arbitrary function
of time.

Furthermore, -we note that the existence of the
stieam function does not depend on whether the motion
is irrotational or rotntionfd. When rotational its
vortieitv is

which is twice the mean angular velooity or ‘trotation”
of the fluid element. Hence, in irrotationnl flow the
stream function has to satisfy

&Q ; &Q=o
~Ti7 (2’)

Then there exists a velocity potentird P and we have

–=u=Qgap
ax.

ap IaQ_=~.——%ax

The equation of continuity is now

(1)

(2)

Equations (1) show that

so that the family of curves

P= constant, Q= constant

:ut orthogonally at all their points of interaction.
I’or steady flows, that is, flows that do not vary

with time, the paths of the particles coincide with the
3treamli.ma3so that no fluid passea normal to them.
rhe Bernoulli formula then holds and the total pres-
nmehead H along a streamline is a constant, that is

J4p ti+p’=H

wherep’ is the static preswure,v the velocity, and p
ihe density. If we denote the undisturbed velooity
k infini~ by V, the quantities pf —p’ = by p, snd
4p V’ by g, the Barnoulli formula may be expressed as

(3)
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The solutions of equations (2) and (2’), infinite in
number, represent all possible types of .irrotational
motion of a nonviscous incompressible fluid in two
dimensions. For a given problem there are usually
certain specitled boundary conditions to be satisfied
which may be sutlicient to fix a unique solution or a
family of solutions. The problem of an airfoil moving
uniformly at a fixed angl? of incidence in a fluid field
is identical with that of an airfoil fixed in position and
fluid streaming uniformly past it. Our problem is
then to determine the functions P and Q se that the
velocity at each point of the ahfoil profile has a direc-
tion tangential to the surface (that is, the airfoil con-
tour is itself a stremnline) and so that at infrnite dis-
tance from the airfoil the fluid has a constant velocity
rmd direction.

The introduction of the complex variable, z =Z +iy,
simplifies the problem of determining P and Q. Any
rmalytic function w(z) of a complex variable z, that is,
n function of z possessing a unique derivative in a

z Plane

T
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w Plane

each real functions of z and y. Suppose now in the
xy complex plane there @ traced a simple curve j(z).
@’ig. 1.) Each value of z along the curve defies a
point win the w plane andf(z) maps into a curvej(w)
or I’(z). Because of the special propertiw of analytic
functions of a complex variable, there exist certain
special relations between and ~(z).

The outstanding property of functions of a compl~x
variable analytic in a region is the existmce of a unique
derivative at every point of the region.

dw lint W ‘W’

z“Fd F7=@

or
dw = pef’dz

This relation expresses the fact that any small curve
ZZ’ through the point z is tmnsformed into a small
curve tow’ through the point w by a magn.iiication p
and a rotation y; i. e., in Figure 1 the tangent t will
coincide in direction with T by a rotation 7 = B—a.

Y

FIOUEE I.—ConfmrnaI propwty Of andytfo fnnctfom

region of the complex plane, may be separated into its
real and imaginary parts w w(z)= w(z+iy) =~(z, y)
+ io(x, y), detmmin@j functions ~ and Q which may
represent the velocity potential and stream function of
a possible fluid motion. Thus, analytic functions of a
compkrx variable possess the special property that the
component functions P and Q satisfy the Cauchy-
Riemann equations (eq. (l)), and each therefore also
satisfiestho equation of Laplace (eq. (2)). Conversely,
any function P(z, y) + iQ(z, y) for which P and Q
satisfy relations (1) and (2) may be written M W(Z+
iv) = w(z). The essential diiliculty of the problem is
to find the particular function w(z) which satisfies the
special bounda~-flow conditions mentioned above for
a specified airfoil.

The method of conformal representation, a geomet-
ric application of the complex variable, is well adapted
to this problem. The fundamental properties of trans-
formations of this type may be stated as follows:
Consider a function of a complex variable z =z-I- iy,
say w(z) analytic in a given region, such that for each
value of z, w(z) is uniquely defied. The function
w(z) may be expressed as w= $-t iq where ~ and q are

e o x

FIGURE 2—Orthogonal network obtafwl by a mnfoimal transformation

This is also true for any other pair of corresponding
curves through z and w, so that in general, angles
between corresponding curves are preserved. In par-
ticular, a curve 22” orthogonal to 22’ transform
into a curve WW” orthogonal to w’.

It has been seen that an analytic function~(z) may
be written P(z, y) + iQ(% y) where the curves l’= con-
stant and Q= constant form an orthogonal system.
II then j(z) is transformed conforndly into j(w)
‘P(& T)+iQ(& d t~t is intc flw(z)] =~(z) ‘R(z, y)
+ zX(Z,y), the curves P(z, y) = constant, Q(z, y) = con-
stant map into the orthogonal network of curves
l?(x, y) = constant, f5’(z,y) = constant. (J?ig.2.) If the

magnification ~ =p is zero at n point w, the trans-

formation at that point is singular and ceas& to be
Ccnformd.

We may use the method of conformal transforma-
tions to iind the motion about a complicated boundary
from that of a simpler boundary. Suppose w(z) is a
function which corresponds to any definite fluid motion
in the z plane, for instance, to that around a circle.
Now if a ne~ variable ~ is introduced and z set equal
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to any analytic function of ~, say z=f&), then w(z)
becomes w~c)] or W&) representing a new motion in
the ~ plane. This new motion is, as has been seen,
related to that in the z plane in such a way that the
streamlines of the z plane are transformed by z =j&)
into the streamlines of the t plane. Thus, the con-
tour into which the circle is transformed represents
the proiile around which the motion W&) exists. The
problem of determining the flow around an airfoil is
now reduced to finding the proper ccmformal transfor-
mation which maps a curve for which the flow is known
into the airfoil. The existenceof such a function was
first shown by Riemann.

We shall fit formulate the theorem for a simply
connected region 6 bounded by a closed curve, and
then show how it is readily applied to the region
external to the closed curve. The guiding thought
leading to the theorem is simple. ” We have seen that
an analytic function may transform a given closed
region iuiw another closed region. But suppose we
are given two separate regions bounded by closed
curves-does there exist an analytic transformation
which transforms one region conformably into the
other? This question is answered by Riemann’s
theorarn as follows:

Riemamn’s theorem.— The interior T of any simply
connected region (whose boundary contains moie than
one point, but we shall be concerned only with regiona
having closed boundaries, the boundary curve being
composed of piecewise differentiable curves [Jordan
curve], corners at which two tangents exist being per-
mitted) can be mapped in a one-to-one conformal
manner on the interior of the unit cimle, and the
analytic 6 function ~=f(z) which consummates this
transformation becomes unique when a given interior
point % of T and a direction through % are chosen to
correspond, respectively, to the center of the circle and
a given direction through it. By this transformation
the boundary of T is transformed uniquely and con-
tinuously into the ckcumference of the unit circle.

The unit circle in this theorem is, of coume, only a
convenient normalized region. For suppose the re-
gions TI in the ~ plane and T2 in the w plane are
transformed into the unit circle in the z plane by
f =j(z) and w-~(z), respectively, then TI is trans-
formed into T, by ~=@(w), obtained by eliminating z
from the two transformation equations.

In airfoil theory it is in the region emkrnal to a closed
curve that we are interested. Such a region can bo
readily transformed conformably into the region in-
ternal to a closed curve by an inversion. Thus, let us
suppose a point G to be within a closed curve B whose

*A regfonof the mmplas pfana k, dmply connected whan any dread contour Iyfng

m-tititiwionuy~ ~tiapointwition tmwtoftitiu
Cf. referenm 3, p.W, m-l-eraaproofof the thexam bad on Gram’s fnnctfon k

givwl.
6 Attention k hem dfrwted to tbo fad that an amalytic functfon k davdopabla at

a Po~t in a POT- s=+= mw=mnt in aw’ drda about tha mint and e.ntfrely
within tha @on

external region is r, and then choose a constant k
such that for every poigt z on the boundary of I’,
]z– ~>lc. Then the inversion transformation wu

& will transform every point in the external region

I’ inti a point internal to a closed region I“ lying
entirely within B, the boundary B mapping into the
boundary of r’, the region at inkity into the region
near %. We may now restate Riemann’s theorem as
follows :

One and only one analytic function ~=j(z) exists by
means of which the region r external to a given curve
B in the ~ plane is transformed ccnformally into the
region external to a circle U in the z plane (center at
z= O) such that the point z = o goes into the point

~- ~ andalso~ = 1 at .iity. This function can

be developed in the external region of O in a uniformly
convergent serieswith complex coefficients of the form

r–m=j(?)–m=z+:+ ;+:+ . . “ (4)

by means of which the radius B and also the constant
m are completely determined. Also, the boundary B
of r is transformed continuously and uniquely into the
circumference of 0.

It should be noticed that the transformation (4) is
a normalized form of a more general swies

r–m=%+a.lz+~+~+- . . . . .

and is obtained from it by a fite tramllation by the
vector G and a rotation and expansion of the entire
field depending on the coefficient a_*. The condition
a_l = 1 is necessw-y and sticient for the fields at
idhity to coincide in magnitude and direction.

The constants G of the transformation are functions
of the shape of the boundary curve alone and our
problem is, really, to determine the complex coefE-
cients defining a given shape. With this in view, we
proceed &t to a convenient intermediate trans-
formation.

The transformation ~= z’ + $—This initial trans-

formation, although not essential to a purely mathe-
matical solution, is nevertheless very useful and
important, as will be seen. It represents also the key
transformation leading to Joukow& airfoils, and is
the-basis of nedy all approximate theories.

Let us define the points in the ~ plane by f u z+i~
using rectangular coordinates (z, y), and the points in
the z’ plane by z’= ae~id using polar coordinates
(ud, 8). The constant a may conveniently be con-
sidered unity and is added to preserve dimensions.
We have

W’+; (5)
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and substituting z’- ae~ti

we obtain j-=2a cash (~+t%)

or j-=2acosh ~CCS0+2iusinh #SiI16

Since t==z+iy,the coordinate (z, y) are given by

z=2(zcosh +COS0

}y=2aaiUh~&0 “
(6)

If ~= O, then z’ =Ufo and ~=2a cos 0. That is, if ~
and Pt are corresponding points in the ~ and z’ planes, 1
respectively, then as P travemes the x axis from 2a to
- 2a, P’ travenms the circle aea from 0= O to 0= r,
nnd as P retraces its path to ~u 2a, P’ completes the
circle. The transformation (5) then may be semi to
map the entire t plane external to the line 4a upiquely
into the region external (or internal) to the circle of
radius a about the origin in the z’ plane.

Let us invert equations (6) and solve for the elliptic
coordinak?s # and 13. @’ig. 3.) We have

cosh #= x
2a COSe

ti$”2a~o
and since cosh 24–sinh *#M1

(2a~s e)’-(2a% 6Y=1
. or solving for sin% (which can not become negative),

where

2sh’o-p+J@+(9’
P=l-G9’-(H

(7)

Similarly we obtain

( x 1

)( )Y ‘=l
2~$ ‘2asinh#

or solving for sinh 2*

2a2’=-p+ Jp;+c) ‘8)
We noto that the system of radial lines @= constant

become confocal hyperbolas in the ~plane. The circles
~= constant beccme ellipses in the ~ plane with major
axis 2a cosh ~ and minor axis 2a sinh #. These orthog-
onal systems of curves represent the potential Iinekand
streamlines in the two planes. The foci of these two
confocal syatans are located at (+ 2a, O).

Equation (8) yields two values of # for a given
point. (z, y), and one set of these values refers to the
correspondence of (z, y) to the point (ae$,0) external to
a curve and the other set to the correspondence of
(z, y) to the point (ad, – 8) internal to another-curve.”
Thus, in Figure 3, for every point external to the
ellipse ~ there is a corresponding point esternal to the
circle Cl, and also one internal to G’.

The radius of curvature of the ellipse at the end of

the major axis is p=2a
~ 2*
= or for small value9 of *,

p*@. The leading edge is at

4?
2a Cosh~~ l+Z ~a+$

Now if there is given an airfoil in the ~ plane (fig. 4),
and it is desired to transform the airfoil profile into a
curve as nearly circular as possible in the z’ plane by
using only transformation (5), it is clear that the axes
of coordinate should be chosen so that the airfoil
appeim as nearly elliptical as possible with respect to
the chosen axes. It was seen that a focus of an
elongated ellipse very nearly bisects the line joining
the end of the major axis and the center of curvature
of this point; thus, we arrive at a convenient choice of
origin for the airfoil as the point bisecting the line of
length 4a, ~hich extends from the point midway be-
tween the leading edge and the center of curvature of
the leading edge to a point midway between the
centar of curvature of the trailing edge and the trailing
edge. This latti point practically, coincidm with the
trailing edge.

The curve B, defined by ae~, resulting in the z’
plane, and the inverse and reflected curve B’, defined
by ae-~ti, are shown superposed on the ~ plane in
-4. The convenience and usefulness of tr-.

FIGUEE 4—-Tmnsfmn8tion Of airfoil blto a n&3dy &C@I contom

formation (5) and the choice of axes of coordinate
will become evident after our next transformation.

%5
The transformation z’= se

~fl
.—Considerthe trans-

formation z’= zero)wherej(z) = ~ ~“ Each exponential

~

term e ‘repre9ent9 the uniformly convergent series

()I&J
()

l&=-l+>+Z1 -# + . .
.Z!P +“. . (9)
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where the coefficient C==&+ iBa are complex num-
bers. For f(z) convergent at all pointe in a region
external tQ a certain circle, z’ has a unique real abso-
lute value [zlelfi’)1in the region and its imaginary part
‘is definitely defined except for integral multiples of
2iI-i. When z= ~, z’=ze~. The constant q=&+
l% is then the determining fact,or at iniinity, for the
afield t infinity is magnified by @ and rotated by the
angle Bo. It is thus clew that if it is desired that the
regions at in.b.ity be identical, that is, z’ = z at infinity,
the constant q must be zero. The constants c, and cz
also play important r81es,as will be shown later.

We shall now transform the closed curve 7 z’= a&m
into the circle z= ae~* (radius ae~, origin at center)
by means of the general transformation (reference 2)

s~ -
I&’ (lo)

2r M ze

which leaves the fields at intinity umdtered, and we
shall obtain expressions for the constants & Bm,and
*O. The justification of the solution will be assured by

the actual convergence of ~~D since ~ the solution

exists it is unique. /

By dehition, for the correspondence of the bound-
ary points, -wehave

z,==~~o+i(e–p) (lo’)

Also
;(A.-EZ2L);n

z’= zel
Consequently

hbo+i(e-P)=; (lL+&J;

where z= ae+o+~

On writing Z= R(COSp+i ain q) where R=ae*O, we
have

#–#o+i(o– P)=:(A.+Wn)&(ms nP–i&ti)

Equating the real and inmginary parts of this relation,
we obtain the two conjugate Fourier expansions:

[ 1$–+o=? $’ cos nv+~sin w (11)

[ 1O–P=: &m14+iln4!Y (12)

AnFrom equation (11), the values of the coefficients ~>

Bn
ED and the constant 40 are obtained as follows:

(a)

(c)

The evaluation of the infinite number of constants
as represented by equations (a) and (b) can be made
to depend upon an important single equation, which
we shall obtain by eliminating these constants from
equation (12).

Substitution of (a) and @) for the coefficients of
equation (12) give9

[

2i7
(e–p)’n~ ~ ~ cos rip’{ #(Q) sin np dp

2r

1
– sin np’ J ~(q) cm np dp

o

where #(P) = # and (8—p)’ represents 8—q as a func-
tion of P’, and where p’ is used to &stinD@sh the angle
kept constant while the integrations are performed.
The esprewion maybe readily rewritten as

~=2T
(e–p)’=; , 0Z J*(P) (sin np cos n~’ – ccs’np sin np’)dw

Then

The first integral is independent of n, while the latter
one becomes identically zero.

Then finally, representing q– 0 by a single
~,viz p—8=e=c(P), we have

By solving for the coefficients in equation
substituting these in equation (11) it may be seen that
a similar relation to equation (13) holds for the func-
tion *(w).

quantity

(13)

(12) and

The last term is merely the constant +0, which is, as
has been shown, determined by the condition of mag-
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nification of the z and z’ fields at infinity. The
2T

corresponding integral~ Y e(q) dp does not appear in
2T ()

equation (13), being zero as a necessmy consequence
of the coincidence of directions at infinity and, in
general, if the region at “tity is rotated, is a ccnstant
different from zero.

Investigation of equation (13).—Thie equation is
of fundamental importance. . A discussion of some of
its properties is therefore of interest. It should be
first noted that when the function +(p) is considered
known, the equation reduces to a deiinite integral.
The functions ~(q) obtained by this evaluation is the
‘tconjugata” function to $(p), so called because of the
relations existing between the cceflicients of the
17’ourierexpansions as given by equations (11) and (12).
For the existence of the integral it is only neceswuy
that ~(p) be piecetie continuous and differentiable,
and may even have infinities which must be below
first order. We shall, however, be interested only in
continuous single-valued functions having a period 2r,
of a type which result from continuous closed curves
with a proper choice of origin.

If equation(13) is regardedas a definiteintegral,it is seen
m be relatedto the well-knownPoissonintegralwhfuhsolves
thefollowingboundary-valueproblemof thecirole. (Reference
3.) Given,sayfor thez planea single-valuedfunction“u(R,7)
for pointson the ciroumferencaof a circlew= R@ (canterat
origin),then the single-valuedcontinuouspotentialfunotion
u(rlc)in theesternalregionz= re~of the oirclewhichsssum-
the valueau (R, r) on thecircumferenceis givenby

~2U +–B
u(r,u) =—f f@,r)2r ~ kP+@-2Rr cos (.–T)”

andsimilarlyfor theoonjugatefunctionv(r,u)

Thessmaybe writtenas a singleequation

u(r,u)+iu(r,u)=f(z) ‘2i&{j(w) ~dw
wherethe valuef(z) at a pointof the internalregionz= re&ia
expressedin termsof the knownvaluesj(w) alongthe ciroum-
ferancsw=Rdr. In partioukr,we may note that at the

.Ar+eir
boundaryitmlf,sincet~ - cot (u–r)~, wehave

–~~ [u(R,.)+iu(R,,)] cot~dr,u(R,u)+w(R,c)E z= ~

whiohisa spsoialfoqn of equations(13)and (14).

The quantity # is immediately given as a function
of 0 when a particular closed curve is preamigned, and
this is our starting point in the direct process of trans-
forming from airfoil to circle. We desire, then, to find
the quantity Y as a function of p horn equation (13),
and this equation is no longer a definik integral but an

1TblafunctionWI becded %JnfommlangolardistmtIon” function, for masons

evident later.
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akgral equation w-hose process of solution becomes
nore intricate. It would be surprising, indeed, if
mything 1ss9 than a functional or intOgral equation
mereinvolved in the solution of the general problem
]tated. The evaluation of the solution of equation (13)
s readily accomplished by a powerful method of sue
wsaive approximations. It will be seen that the
Iearnew of the curve ae~” to a circle i9 very signifi-
rent, and in practice, for airfoil shapes, one or at most
bwo steps in the process is found to be sticient for
Teat accuracy.

The qumtities @ and ~ considered as functions of p
have been denoted by #(W) and c(p), respectively.
When these quantities are thought of as functions of 0
they shall be written as ~(0) and ?(0), respectively.

Then, by definition

md
~(e) =*[p(e)] (15)
z(e) =C[p(e)]

Since P–(7=6, we have
e(p) = p–c(p)

}
(16)

$0(0)= 0+=(0)

We are seeking then two functions, #(P) and c(P),
conjugate in the sense that their Fourier series expan-
sions are given by (11) and (12), such that #[P(0)]=
J(o) where T(8) is a known single-valued function of
period 2T.

Integrating equation (13) by parts, we have

The term log sin ~ isrealonly inthermgep=p’ to
.

w-21r+ q’, but we may use the interval O to 2T for q
with the understanding that only the real part of the
logarithm is retained.

Let us write down the folIowing identity:

e–e’
log sin q =log A ~

.Je+d-(e+a)’ .JL9+ZJ–(O+Z.J’

+ log
2

So-e’ +l%h(e+d%+%)’
2 2

,JL9+EJ–(e+kk)’

+
2

..”+logti (e+z,-,) -(@+zk_,)’+ “ “ “
(17)

2

.#wJ-(e+z”)’ .Je+z)–(e+z)’
n

+logti(e+z._,):(e+G_,)’+loga(e+a;(e+%)’
2

where in the last term we recall that 0+ z(8) - P(O);and
where it may be noted that each denominator is the
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numeraimr of the preceding term. The symbols z~
(k=l, 2, . . . . n) represent functions of 0, which thus
far are arbitrary:

Since by equation (15) J(o)= #[P(0)] we have for
corresponding elements dOand dq

Then multiplying the left side of equation (17) by
1 d~ (0) do ~d iRti-1 dx(~) dw and the right side by ~ do

r dp
grating over the period Ob 2X we obtain

~(e+z(e)) – (H-z(e))’
12T — % de (18)‘;{ log--- (e+&e+d’

2
where k= 1,2, . . ., n.

We now choose the arbitrary functions zJO’) so that

ZO(e’)= o
and

where k=l, !2,. ..,.
Equation (18) maynthen be written

z(e’)=~+q+(~-q . . . +(~—~_*)+(z—~) (20)

or Z(O’)=X1+A2+ . . . &+A

where Xz(O’)u ?k—?I_l and is in fact the kti term of
equation (18). The last term we denoti by X.

From equation (19) we see that the function ~(tl’) is
obtained by a knowledge of the preceding function
&(O’). For conwmience in the evaluation of these
fUIICtiOllS,S8y

12Z . (e+?,)– (e+?,)’=
?+l(O’)=; {log ~— .2 de “

we introduce a new variable ~ deiined by
$%(e)= e+ Zk(e) (k=l,2, . . .,n) ‘

Then

E**[e(p’~+J]= •*k+~(p’k)

From the definition of pt as
pk(e)= e+ @)

~The symbol (O+@ represents .9++@I fmd Is used to denote tlm mme fuu&fOn

of # th8t .9++(.9) Is of & The tike~a .9are-Ed mfndo-t of mch

other.

we may also define the symbol ~k(qk)

L9(pJ= p~– eJpJ

where
@) =&O~(e)]

by

It is important to note that the symbols ?k, c*, CZ*
denote the same quantity considered, however, as a
function of 0, W, Pk_l,respectively.

The quantities (~t–zt-,) in equation (2o) rapidly
approach zero for wide classes of initial curves @(tl),
i. e., ~[~(pk)] very nearly equals ~[0(pk+l)] for even
small k’s. The process of solution of our problem is
then one of obtaining successively the functions ~(0),
~[@J], J[e(4?J], . - . . T[O(pJ] where ~[fl(pn)] and
zJO(pJ] become more and more “conjugate.” The
process of obtaining the successive conjugates in prac-
tice is explained in a later paragraph. We fimt pause
tc state the conditions which the functions pkare sub-
ject to, necessary for a one-to-one correspondence of
the boundary points, and for a one-to-one corre-
spondence of points of the external regions, i. e., the
conditions which are necessary in order that the
transformations be conformal.

In order that the correspondence between boundary
points of the circle in the z plane and boundary points
of the contour in the z’ plane be one-to-one, it is
necessary that 8(P) be a monotonic increasing function
of its argument. This statement requires a word of
explanation. We consider only values of the angles
between Oand 2x. For a point of the circle boundary,
that is, for one value of p there can be only one value
of O,i. e., d(P) is always single valued. However, p(d),
in general, does not need to be, as for example, by a
poor choice of origin it may be many valued, a radius
vector from the origin intersecting the boundary more
than once; but since we have already postulated that
T(o) is single valued this case can not occur, and P(6)
is also single valued. II we decide on a definite direc-

tion of rotation, then the inequalim ~ 30 expresses

the statement that as the radius vector from the origin
nveeps over the boundary of the circle C, the radius
vector in the z’ plane sweeps over the boundary of B
md never retiaces its path.

The inequality

corresponds to
de(q) <l
T-

Llao, the condition

xme9ponds to
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Multiplying ~ by ~ we get

(’-$90+%9=’
This relation is shown in Figure 5 as a rectangular

i%

I

mom tS.-The qnautuy & a4 a fnnotlan of g

hyperbola. We may notice then that the monotonic

behavior of w(d) and 13(P)requires that $ remain on

the 10wer branch 1°of the hyperbola, i. e.,

(22)

It will be seen later that the limiting values

correspond to points of iniinite velocity and of zero
velocity, respectively, arisiig from sharp corners in the
original curve.

The condition for a one-to-one conformal corre-
spondence between points of the external region of the
circle and of the external region of the contour in the
z’ plane may be given (reference 5, p. 98 and reference
6, Part II) as follows: There must be a one-to-one
boundary point correspondence and the derivative of

5$
the analytic function z’= ze1 given by equation (10)
must not vanish in the region. That is, writing g(z)

for ~ $ we have

dz’
G =ev(s) l+z~

( )
#O for lz]>12 or since

the in@mil transcendental function eo@Jdoes not vanish
in the entire plane, the condition is equivalent to

dg(z)
z~# – 1 for lz]>~

M The VOIW of the uppr branch of tbe h~bele ark when the @on fnt8rnaf

to the carve Ue WI k bamfonned fnto tbe axtarnel @on of a cM% but may also

tfmre be avo[ded by deflnhw c-# fnstead of -e.

40703-3~13

By equation (10’) we have on the boundary of the
circle, g(lie~) = #— #o—ic, and

de(q) .d+(~).——
dP ‘a dP

the first term on the right-hand side being real and the
last term a pure imaginary. We have already postu-
lated the condition

-+,

as necessary for a one-tcwne boundary point corre-

dg(z) =spondence. Now by writing Z=&+~q and z=

de(q)p(~,q) +iQ(g,q), we note that ~ gives the bo~dq

values of a harmonic function ~(t,q) and therefore this
function a.wwmesits matium and minimum values
on the boundary of the circle itself. (Reference 3, p.

& can never become -1 in the223.) Hence ~z

dz’
external region, i. e., —~ can never vanish in this

region.
At each step in the process of obtaining the succes-

sive conjugates we desire to maintain a one-to-one
correspondence between 8 and pk, i. e., the functions
O(PJ and q~(fl)should be monotonic increasing and are
hence subject to a restriction similar to equation (22),
viz,

(22’)

The process may be s~ed up as follows: We con-
sider the function T(8) as known, where V(8) is the
functional relation between * and 0 deiin.ing a closed
curve ae?W. The conjugate of T(6) with respect to 0
is 3(0). We form the variable ~= O+k(0) and also
the function 7[o(PI)]. The conjugate of T[13(P,)]with
respect to ~ is e*z(WJwhich expresed as a function of
0 is ?,(0). We form the variable ~= 8+ k(d) and the
function ~[tl(w)]. The conjugate of 7[0(pJ] is c*S(%),
which as a function of 8 is &(0), etc. The graphical
criterion for convergence is, of course, reached when
the function Z[6(WJ] is no longer altered by the
process. The following figures illustrate the method
and exhibit vividly the rapidity of convergence. The
numerical calculations of the various conjugatw are
obtained from formula I of the appendix.

In Figure 6, the T(fl) curve represents a circle re-
ferred to an origin which bisects a radius (obtained
from an extremely thick Joukowsky airfoil) (seep. 200)
and has numerical values approximately five times
greater than occur for common airfoils. The ~(q)
curve is lmown independently and is represented by
the dashed curve. The process of going from ~(8) to
+(q) Wtig 4(P) as unknown is as follows: The
function q(0), the conjugate function of ~(e), is found.
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The quantity @is then plotted against the new variable is drawn at P’. This process yields the function ~(tl).
w= 0+&(13) CLe., each pobt of ~(tl) is displaced hori- The quantity ~ is now plotted against the new variable
zontally a distance ‘~ and yields the curve 7[0(%)]. ~= e+~(f?) (i. e., each point of ~(8) iE displaced hori-
(Li.kewise,3(o) is plotted against * yielding q(n).) zontally a distance ?J giving the function ij[f3(pJ].

.5

-.5

-

/.0

.5 \

o .5 1.0 1.5 20 2s
Argumenf(6, p,, ~, p in mdiam)

l?K7UEE &—’l’be PIOCZS9Of obtain@ ~Ve 120@tI@s5

The function c*,(pJ is now determined asthe conjugate This curve is shown with small circles and coincides
function of J[O(qJ]. This function expressed as a with ~(p). Further application of the process can
function of 8is c*S[%(8)]=a(l?). It is plotted as follows: yield no change in this curve. It may be remarked

..2V

.JO

o

-.10

-.20

.40

.30

.a

.10

0

F .%’
Fmum 7.—~ applied to tremfurmfng a square into a &de

At a point P of e“, (w) and Q of e(%) cmm.spending to
a deiinite value of ~ one finds the value of d which
corresponds to ~ by a horizontal line through Q meet-
ing ~(f3) in Q’; for this value of 0, the quantity * at P

here that for nearly all airfoils used in practice one
step in the proce9s is suilicient for very accurate results.

& another example we shall show how a square
(origin at center) is transformed into a circle by the
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method. In Figure 7 the t(d) curve is shown, and in
Figure 8 it is reproduced for one octant.’l The value
is J(O)= log sec 0. The function ~[fl(n)] is shown
dashed; the function Z[13(~] is shown with small
crosses; and 7[0(%)] is shown with small circles. The
solution x(p) is represented by the curve with small
triangles and is obtained independently by the known
transformation (reference 3, p. 375) which transforms
the external region of a square into the external region
of the unit circle, as follows:

owhere P ~ denotes a power series. Comparing this

with equation (10), we find that x(q) except for the

[ (’)1constant *Ois given as the real part of log 1+ P :

evaluated for z= ef~, and that c(q) is given as the
negative of the imaginary part. It may be observed
in Figure 8 that the function ~[d(w)] very nearly

Rx

l--t

“W--t-bH /.

I I I F 1

0 J .2 .3 .4 .5 .6 7 ~.a

FmuBE &—Pro4m 8DPIM to tramkmnfns a square fnto a cfi-ole

equals ~(p). The functions e(q) and ?(13)are shown in

Fiie 7 (a); we may note that at p=:, which corre-

de
spends to a corner of the squtie, —= 1 or also,d~
dz
a=w”

11~~ oftie motry fnvolvad ooly thefntarvalO to ~ newfhe med. The

In&ml fn the appandfx mn be tmWed as

c(P(J=-&~WP) mt~d~

r

=-? } #(W)[mt z(p-~-mt 2(#p’)]dp
rO

It maybe remarked &-at the rapidity of convergence
is influenced by certain factors. It is noticeably af-
fected by the initial choice of 6(8). The choice
~(f?)= Oimplies that 6 and p are considered ta be very
nearly equal, i. e., that a.e~a reprtyxmts a nearly cir-
cilar curve. The initial transformation given by
equation (5) and the choice of axes and origin were
adapted for the purpose of obtaining a nearly circular

FmwaE. 9.—Tramdatfon by the dfstmce Odf

curve for airfoil shapes. If we should be concerned
with other classe9 of contours, more appropriate
initial transformations can be developed. If, how-
ever, for wcurve ae~~ the quantity e= p– o has large
valuea, either because of a poor initial tmnsformation
or because of an unfavorable choice of origin, it may
occur that the choice G(8) = O w51 yield a function

d~
~(m) for which ~ may exceed unity at some points,

thus violating condition (22’). Such slopes can be
replaced by slopes less than unity, the resulting junc-
tion chosen as %(0) and the process continued as
before.” Indeed, the closer the choice of the function
~(8) is to the final solution z((l), the more rapid is the
convergence. The case of the square illustrates that
even the relatively poor choice q(o) = Odoes not appre-
ciably defer the convergence.

The translation ZI= z+ cl.—Let us divert. our
attention momentarily to another transformation
which” will prove useful. We recall that the initial
transformation (eq. (5)) applied to an airfoil in the ~ .
plane gives a curve Bin the z’ plane shown schemati-
cally in Figure 9(a). Equation (10) transforms this
curve into a circIe C about the origin O as center and
yields in fact small vahm of the quantity ff– t?. We
are, however, in a position to introduce a convenient
transformation, namely, to translate the circle C into . ..
a most favorable position with rwpect to the curve .B
(or vice versa). These qualitative remarks admit of a
mathematical formulation. It is clear that if the
curve B itself happens to be a circle n the vector by
which the circle C should be translated is exactly the
distance between centers. It is readily shown that

~ The&t -p fn the procass is now to dafina PI-HcN) and form th fUOCtfOII

?[e(~]. The mnju@n fnnotfon of ~[LQ(ml]k c%(m) whfch ammsed aS a tictfen

of e fs Zl(e), eta

n*p. m.
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then equation (10) should contain no constant term.
We have

‘2(1+:+X3+“)(’+3+~)x
( )l+%+ . . etc.

-z ~+k’ ~k:+
( Zz .””” )

(lo)

(lOa)

where 14
kl = C,

k,=ca+c;

k~=~+czc, t$

.........

It is thus apparent that if equation (10) contains no
first harmonic term, i. e., if

q
c, =Al +031 =~fz$e+dv = O,

‘o

the transformation is obtained in the so-called normal
form

z’=z,+~+q+ . . .Z1 Z1 (23)

This translation can be effected either by substituting
a new variable Z1= z+ cl, or a new variable z1’= z’ —cl.

.E
co
Tfx
-.10
-.15
..20
.15

#:J:

o
.05

50
-.05
.Is

$::

0
686i

~awm10.—The ~+9) and Z(tl) mrvm (for Clark Y drfoil)

This latter substitution will be more convenient at
thi9 time. Writing

The variable-s~,, and%,, oan be eqmssed in terms of
+, 0, -y, and & Tn Figgre 9(b), ~ is a point on the B

11Th~ CIJm~ @.11b &m@.i h a mcnrsfon kmn. S53 fcdnote! 16.
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curve, i. e., OP = ae~, PQ represents the translation
vector c1=“a.&ti, OQ is ‘a&l-+wl,and angle POQ is
denoted by P. Then by the law of cosines

and by the law of sines

InFigure 10 are shown the 7(0) and z(6) curves for the
Clark Y airfoil (shown in fig. 4) and the I,(OJ and
~ (8J curves which remdt when the origin is moved
from O tc M. It may be noted that il(OJ is indeed
considerably smalIer than z(8). It is obtained from

and the constant #0is given 16by

The combined transformations.-It will be useful to
combine the various transformations into one. We
obtain from equations (5) and (10) an exproaaion as
follows :

‘=’acosh(og~@ (24)

or we can also obtain a power series development in z

(25)

The constants k= may be obtained in a convenient
motion form as

kl = C,
2k2= klcl+ ‘~
3ks=k,c, + 2klA+ 3za
4kh= k~cl+ 2kfi + 3klca+ 4c4
. . . . . . . . . .

The constants ~ have the same form ask. but with
each C{ replaced by —et (and &=l). It will be re-

MThEconstanth laInvariant to &an@ Of od~n. (% P. Z@).) It should be

mII181kd th8t ti txanalatlon by the vector cl fa dY 8 matter of wnvenknco and

k may useful for V~ krwular abax For 8 stidy Of tti PmWflm of ~foll

shawawe abu w otiY the OrfgirmI c(r) curve. (FM. m(a).)
N By OqustfOm(Q and (10) we have

●

;~
Tbemnstrmt k.fs thus the cmflident of ~ in the -On of c 1 m and the corutn at

_; r.

i z“b. the met3dent of ~ fn tbe mmmdon of 6 . For the rmurdon form for k,

s Sndthmnian Ma*tlcal Forrmdm and TabIes of Elllptlc Functions, p. 12~
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called that the values of A are given by the coefficients
of the Fourier expansion of #(W) as

and

The fht few terms of equation
follows :

.

(25) are thbn as
.

cl’ C]3— —
q+ 2 +az+~+~l+ 6 ‘ClfZ2

r=z+c, + ~ .+. .. (25’)

By writing z,= z + cl, equation (25) is cast into the
norrntdform

(26)

The constants bnmaybe evaluated directly in terms
of % or may be obtained merely by replacing #(P) by
k (to)~ the foregoing valu~.for %.

The series given by equations (26) and (26) may be
inverted and z or ZI developed as a power series in ~.
Then

q G+ fz1c1_a1c12+2W1+q+G2
z@= f-cl-— —

r r’ P
. . . (27)

and

(28)

The various transformations have been performed
for the purpose of transforming the flow pattern of a

FIOURE 11.—flti%amffnm about tie wltb zero drcnfation (shown by the fml

lines) Q-- Veinh P* p.mnwant

circle into the flow pattern of an airfoil. We are thus
led immediately to the well-known problem of deter-
mining the most general type of irrotatiomd flow
around a circle satisfying certain specified boundary
conditions.

The flow about a cirole.—The boundary conditions
to be satisfied are: The circle must be a streamline of
flow and, at infkity, the velocity must have a given
magnitude and direction. Let us choose the ~ axis as
corrcaponding to the, direction of the velocity at
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tinity. Then the problem stated is equivalent to
that of an iniinite circular cylinder moving parallel to
the Caxis with velocity Vin a fluid at rest at iniinity.

The general complex flow potenth 17for a circle of
radius R, and veloci~ at i.dnity V parallel to the z
axisi5

where 1?is a real constant parameter, known

A

(29)

as the

FIoum I!A-Strmdlnw about circle for V-O Q- ~<=mrutant

Wctiation. It is defined as $MIS along any closed
curve inclosing the cylinder, o, being the velocity
along the tangent at each point.

Writing z =Refi~ and w =P +iQ, equation (29) be-
comw

w=– Vcosh(p+&) –g(P+iP) (29’)

or
I

P=– Vcosh 14COS ~+;p

Q=–vsinhpsirq+ I
For the velocity components, we have

(7g“u —w=—v l— -# _gz (30)

In Figures 11 and 12 are shown the streamlines for
the cases I’= O, and V= O,respectively. The cytider
experiences no resultant force in the9e cases since all
,streamdirmare symmetrical with respect to it. I

The stagnation points, that is, points for which u

and u are both zero, are obtained as the roots of $~=0.
Uz

This equation has two roots.

%“
ir * 416TWP— P

4TV
and we may dhingukh di.flerenttypes of flow acccrd-
ing as the &scriminant 16?FP– P is positive, zero,
or negative. We recall here that a ccmformal trans-
formation w =~(z) ceases to be ccnformal at points

where ‘T; vanishes, and at a stagnation point the flow

divides and the streaniiine possesses a singularity.
1r~~4,p.54~r13f_~5 p.ll& The]~~m~~~dW~

the r@oa ontsfde the fnOnItn aylfnder (tha polat at iafinity excluded) la donbly

cmuuxted fmd thorafom we mast fnclnde the pcmfbflily of ayclfc motion.
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The different type-s of flow that result according

as the parameter P ~ 16+EVZ are reprwmtid in

Figure 13. In the first case (fig. 13 (a)), which will not
interc9t us later, the stagnation point occuxs as a
double point in the fluid on the q ti, and all fluid
within this streamline circulates in closed orbits around
the circle, while the rest of the fluid passes downstream.
In the second case (fig. 13 (b)), the stagnation points
are together at S on the circle Rei~ and in the third
case (fig. 13 (c)) they are symmetrically located on the
circle. We have noted then that as r increases from
O to 4irBV the stagnation points move downward on

the circle l?ei$’from the f
axis toward the q axis.
Upon further increase in
I’ they leave the circle and
are located on the ~ axisin
the fluid.

COnVelAyj it iS clear
that the position of the
stagnation points can de-
termine the circulation r.
This fact will be shown to
be significant for wing-
section theory. At pres-
ent, we note that when
both I’ and V#O a marked
~em exists in the
stmamlineawith respect to
the circIe. They are sym-
metrical about the q axis
but are not symmetrical
about the t axis. Siice
they are closer tngether on
the upper side of the circle
than on the lovmr side, a
resultant force existi per-
pendicular to the motion.

We shall now combine
the transformation (27)
and the flow formula for

the circle equation (29) and obtain the general complex
flow potential giving the 2-dimensional irrotational flow
about an airfoil shape, and indeed, about any closed
curve for which the Riemann theorem applies.

The flow around the airfoil.-In Figure 14 are
given, in a convenient way, the dMerent complex
planes and transformations used thus far. The com-
plex flow potential in the z plane for a circle of radius
1? origin at the center has been given as

(?
.

‘m(z) =-v 2+; –glog z (29)

where V, the veloci~ at infinity, ig in the direction of
the negative ~ h. Let us’introduce a parameter to

OMMITTW3 FOR AFIRONAUTICS

permit of a charge in the direction of flow at in.flnity
by the angle a which will be designated angle of attack
and defined by the direction of flow at infinity with
respect to a fixed axis on the body, in this case the
axis p= O. This flow is obtained simply by writing
Z& for z in equation (29) and represents a rotation of

*Y $ Plane

I

FIOUEE 14.4%3 C=md.ed transfonrlauona

the’ entire flow field about the circle by angle a. We
have

?o(z)— —
( )

V ze~+~e– ‘a –t~log z (31)

dw .
Z“”–w

(32)

Since a conformal transformation maps streamline
and potential Iincs into streamlines and potential lines,
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we may obtain the complex flow potentials in the
various planes by substitutions. For the flow about
the circle in the Z1plane, z is replaced by ZI– c1

w (21)
[

= - V (zl–cl)eb+~)
1

-g log(z,–c,) (31’)

dw
[ ‘1

.

z,= – ‘e’” 1-* –Al[cl) ‘32’)

For the flow about the B curve in the z’ pknej z is
replaced by z(~) (the inverse of eq. (lOa)) and for the
flow about the airfoil in the t plane z is replaced by
z(f) from equation (27)

TV&)= – nzk)e~+z~-~] –~ log Z(f?) (33)

%=[-vef”(l-F%Hiil%?’34)
The flow fi@s at infinity for all these transformations
have been made to coincide in magnitude and direction.

At this point attention is directed to two irnportmt
facta. First, in the pretions analysis the original
closed curve may dMer from an airfoil shape. The
formulas, when convergent, are applicable to any
closed curve satis@g the general reqnirementi of
the Riemann theorem. However, the peculiar ease of
nnmericol evaluations for strerunline shapes is note-
worthy and significant. The second important fact is
that the parameter I’ which as yet is completely unde-
termined is readily detmmined for airfoils md to a
discussion of this statement the next section is devoted.
It will be seen that airfoils maybe regarded as fixing
their own circulation.

Kutta-Joukowsky method for ilxing the ciroula-
tion,-All contoum ueed in practice as airfoil profiles
possess the common prope@ of terminating in either
rLcusp or sharp corner at the tmiling edge (a point of
two tangents). Upon transforming the cirole into an

airfoil by t=~(z)j we shall find that $ is irdhite at

the trailing edge if the tail is perfectly sharp (or very
large if the tail is ahnost sharp). This implies that

I II 1’the numerical value of the veloci~ ~ ~ = lo[ is

Mnitb (or extremely large) provided the factor ‘~

is not zero at the tail. There is but one value of the
circulation that avoids infinite velocities or gradiente
of pressure at the tail and this fact gives a practical
basis for iixing the circulation.

The concept of the ideal fluid in irrotational poten-
tial flow implies no dissipation of energy, however large
the velocity at any point. The circulation being a
measure of the energy in a fluid is unrdtamd and inde
pendent of tie. h particular, if the circulation is
zero to begin with, it can never be different from zero.

However, sinca all real fluids have viscosity, a better
physical concapt of the ideal fluid is to endow the
fluid with infinitesimal viscosity so that there is then
no dissipation of energy for finite velocities and pres-
mre gradients, but for infinite velocities, energy losses
would result. Moreover, by Bernoulli’s principle the
pressure would become infinitely negative, whereas a
real fluid can not sustain absolute negative pressures
and the assumption of incompressibility becomes in-
valid long before this condition is reached. It should
then be postulated tkt nowhere in the ideal fluid from
the physical concept should the velocity become

tits. It is clear that the fac@r ‘~ must then be

zero at the trailing edge in order to avoid infinite
velocities. It is then precisely the sharpwss of the
trailing edge which furnishes us the following basis for
tixing the circulation.

dwIt will be recalled that the equation ~ = O deter-

mines two stagnation points symmetrically located on
the circle, the position of which varies with the value
of the cirmdation and conversely the position of a
stagnation point determines the circulation. In this
paper the z axis of the airfoil has been chosen so that
the negative end (0= r) passes through the trailing
edge. From the calculation of c= p– 0 (by eq. (13))
the value of p corresponding to any value of 8 is detar-
mined as p=o+~, inparticularat e==~, p=r+fl, where
b is the value of e at the tail and for a given airfoil is a
geometic oonstant (although numerically it varies
with the choice of axes). This angle L3-is of consid-
erable significance and for good reasons is called the
angle of zero lift. The substance of the foregoing
discussion indicates that the point z=12e{(d@ = –li?e@
is a stagnation point on the circle. Then for this value
of z, we have by equation (32)

dw
.

6 = – Vef-F)-2~ ‘O

or r= – 27&ViW* (1– e-a’(~~))

4

ei(u+~)—e-f(d)
= 49rR 2; )

=4z-RV sin (a+ /9) (35)

This value of the circulation is then sticient to
make the trailing edge a stagnation point for my vaIue
of a. The airfoil may be considered to equip itself
with that amount of circulation which enables the
fluid to flow past the airfoil with a minimum energy
10ss,just as electrici@ flowiqg in a flat plate will di5

tibuti itself so that the heat loss is a minimum. The
final justification for the Kutta assumption is not ordy
its plausibility, but also the comparatively good agree-
ment with expetiental results. Figure 15 (b) shows
the stremilines around an airfoil for a flow satidying
the Kutta condition, and Figures 15 (a) and 15 (c) illus-
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trate ceses for which the circulation is respectively too
small and too large, the stagnation point being then on

the upper and lower surfaces, re-
spectively. For these latter cases,
the complete flow is determinable
only if, together with the angle of
attack, the circulation or a stag-
nation point is spetied.

Velooity at the surface.-The
flow formulas for the entire field
are now uniquely deternrined by
substituting the value of I’ in equa-
tions (33) and (34). We are, how-
“ever,in a position to obtain much
simpler and more convenient re-
lations for the boundary curves
themselves. Indeed, we are chiefly
interested in the velocity at the

surface of the airfoil, which velocity is taruzenthdto

~GUEE 16.-(8) FklW with

drculation snmller than for
Kutta wndltiou (b) flow

satf@ing Kutta umditiorq

(u) flow with ckcnlation

greatez than for Kutta

amdftlon

the surface, since the airfoil contour-is a str&rdine of
flow. The numerical value of the velocity at the
surface of the airfoil is

We shall evaluate each of thcze facto= in turn. From
equations (32 and (35)

< )
g= –v~ 1–:e-2i= _ i4zRV &(a+ @

2ZZ

At the boundary surface z= 12e~, and

dw “~= – ve~(l –e-z’@*,) –2~Ve-+ *(.+ ~)

or
dw_=_ Ve-%[(ef(dd –e-i(~~)) +2i &n(a+ /9)]
dz

= –2iVe-*[sin(a+ W)+Si.n(a+ ~)]

and

la
‘z =2 V@l(a+q)+Sin(a+fl)]

In general, for arbitrary r we find that

To evaluate 1~1 we start with relation (10)

At the bonndmy surface

z’= ze~+i’ where E= P—9 and z=ae~o+~

dz’ Z’
i

~+zd(&&)
z- z dz )

(36)

(36’)
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(37’)

Then ‘ pg’,=e.+om
l+%

By equation (6)

(37)

{= z’ +$’ and at ~heboundary z’= ae~{$, or

~=2a cosh(~+ti)

=2 sinh(*+i@-(q.

IIThen ~~ ‘=4e-2* (d.nh2~cos20+cosh’# sin20)

= 4e-2* (sinh2#+ h%)

Then finally

dw dw dz dz’—.—.
‘= d{ dz G.*

V@n(a+ q) + sin(a+ P)]

d

(39)

( w))
(Sinh’++sin%) 1-1-

li this formula the circulation is given by equation
(35). In general, for an arbitrary value of I’ (see
~quation (36’)), the equation retains its form and is
fiven by

[ l(’+$)e’” (,,)
v sin(a+w) +4+

v=

( (%)1
(sinh’++ sin%) 1-t-

For the special we I’= O,we get

( ‘)Vsin(a+q) 1+$; e%
v==

J ( (9) ’41)
(sinh’#+sin20) 1+

Equation (4o) is a general result giving the velocity
it my point of the surface of an arbitrary airfoil sec-
ion, with arbitrary circulation for any angle of attrmk
r. Equation (39) represents the important special
:ase in which the circulation is specified by the Kutta
mdition. The various symbols are functions only of
he coordinates (z, y) of the airfoil boundary and ex-
mssions for them have already been given. In Tables
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I and II am given numerical results for different air-
foils, and explanation is there made of the methods of
calculation and use of the formulas developed.

We have immediately by equation (3) the value of
the pressure p at any point of the surface in terms of
the pressure at infinity as

‘n /u\~

Some theoretical pressure distribution curves are given
at the end of this report and comparison k there made
with experimental results. These comparisons, it will
be sem, within a large range of angles of attack, are
t!tlibg~y good.l=

GENERAL~G-SECIION CHARACI’ERISTICS

The remainder of this report will be devotid to a
discussion of the parameters of the airfoil shape aifect-
ing aerodpamic properties with a view to determining
airfoil shapes satisfying preassigned properties. This
discussion will not only furnish an illuminating sequel

—
P.

Fmurm 16.

to the foregoing analysis leading to a number of new
results, but will also unify much of the existing theory
of the airfoil. In the next section we shall obtain
some expressions for the integrated characteristics of
the airfoil. We start with the expressions for total
lift and tmtalmoment, fit developed by Blasius.

Blasius’ formulas.-Let C in l?igure 16 represent a
closed streamline contour in an irrotational fluid field.
Blasius’ formulas give expressions for the total force
and moment experienced by C in terms of the complex
velocity potential. They may be obtained in the fol-
lowing simple manner. We have for the total forces
in the z and y directions

P== – {I@= – .$pdy

PV= @d8 = .&k

OF ARBITRiRY WIN(? SECTIONS

The pressure at any point is

P= Po–+d

193

Then,

P=–iPB=;.@dy +idz)

“g&g&

where the bar denotes conjugate complex quantities.
Since C is a streamline, vZdy– v,dx = O. Adding the
quantity

ip{ (Vr + iv=) (v:dy – V,(b) = O

b the last equation, we get. 19

l’.-ipv=~{(vivp)p( dz+idy)y)

.:{(gpz (42)

The ditTerential of the moment of the resultant
force about the origin is,

dikf,=p(z Ck+y dy)
=~. P. of p[Z ti+y dy+i(ydz-zdy)]
=R. P.ofpz~

where “R. P. of” denotes the real part of the complex
quantity. We have from the previous results

()
{p dw ‘A

d(Pz–iPB)= ‘;p ~=~ ~

Then w,= –R. P. of ;&~Z dz

and MO= –B. P. of; &&)’z dz (43)

Let us now for completeness apply these formulas to
the airfoil A in the ~ plane (fig. 14) to derive the Kutta-
Joukow& classical formula for the lift force. By
equation (32) we have

g= – v6k_gz+R2v;– ‘=

and by equation (25)

d~~=1–~–:– . . .

Then
dw dw dz
*“Z”%

= – Ve&–~r~+ (RWe-ti-alVe’”) $+ . . .

~ Of. B1.miusj H 2s. f. Math. u. Phy~ B(L 6SS.ECandBd. b9S.4%1910.
Simflarly, .

PS+IP,
-G@~

al= mnvenfent relntlon to use than (42).

Note that when tbe &on about Cfs regular the value of tbe fnbxral (42) remnins

unobanml by fn@ratfng about any otbar curve enokdng c?.
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and

where

Then

.
=: (21riAJ

Therefore
Pz=pvr sin CY
PV=pVI’ COaa 1

and are the components of a force pvl’ which is per-
pendicular to the direction of the stream at infinity.
Thus the resultant lift force experienced by the airfoil is

L=pvr (44)

and writing for the circulation 1’ the value given by
equation (35)

L=4&pV’ sin (a+ f?) (45)

The moment of the rwultant lift force about the
origin ~= Ois obtained as-—

()MO=R. P. of–; $ $ ‘f d~

()
-R. P. of–~{ ~ 2&dz

=R. P. of–~
(

+A1+~+
)

2&&y~..x’

(
cl+z+f+~+ . .

)( )
l–~+ . . dz

=R. P. of –~2a-i (coefficient of z-’)

=R. P. of –;2iri (A,+A,cJ

or, ~ is the inmginaxy part of IVp(A2-I-AICl). After
putting n Cl= mea and&= b2&7WOget

ikG=2~PWPti 2(a+v)+pVI’mccs (a+13) (46)

The rewilta given by equations (44) and (46) have
physical siguiiicance aud are invariant to a tiransforma-

tion of origin as may be readily veriiied by employing
equationz (26) and (32’) and integrating around the 01
circle in the 21plane. It is indeed a remarkable fact
that the total integrated characteristic, lift and loca-
tion of lift, of the airfoil depend on so few parameters
of the transform”ationas to be almost independent of
the shape of the contour. The parametem R, & al,
and c1involved in them relations will be discuwed in a
later paragraph.

We shall obtain an interesting result” by taking
moments about the point t= c1 instead of the origin.
(M in fig. 17.) By,equation (25) we have,

and by equation (43)

FIQUEE 17.—Marnent em from M onto the Ilft motor

This rawlt could have been obtained directly from
equation (46) by noticing that pVI’ in the second term
is the resultant lift force L and that Lm cos (a+ 6)
repremntsa moment which vanishes at M for all valuea
of . (In fig. 17 the complex coordinate of M is
~=me~, the arm OHis m cos (a+~).) The perpendic-
ular h~ from ill onto the rewltmt lift vector is simply
Dbtainedfrom MM= LhM,
E

h~=- (48)

The intersection of the resultant lift vector with the
:hord or axis of the airfoil locatea a point which may
be considered the center of pressure. The amount of
travel of the center of pressure with change in angle
of attack is an important characteris-tic of airfoils,
=pecially for considerations of stabili@, and will be
Iiscussed in a later paragraph.

n First obtafrmrf by R. van Mlsos. (Referenea 6.) The work of van Mlses forme

m @@ret gmmetriml etndy of the ebfall.
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The lift force has been found to be proportional b
Sin (cY+/3)or writing a+~=al

L=4rpRP Sinal

where al may be termed the absolute
Similarly writing a+ y = a,

MM= 2T62pP Sill2az

(49)

angle of attack.

(50)

WN%von Misea (reference 6, Pt. II) we shall denote
the axea determined by passing lines through ill at
angles Band y to the z axis as the first and second axes
of the airfoil, respectively. @lg. 18.) The directions
of these axea alone are importmt and these are fixed
with respect to a given airfoil. Then the lift L is
proportional to the sine of the angle of attack with
respect to the first axis and the moment about M to
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If this moment is to be independent of a, the coeffi-

cients of sin 2a and cos 2a must vanish.
Then

baCOS2y=Rr COS (~+ u)

and
b’ sin 27=l?f Sh@+u)

Hence,

r==:and u=27–13

Then if we move the reference point of the moment to

a point F whose radius vector from M is baef@~@, the
Z

moment existing at F k for all anglas of attack con-
stant, and @VSIlby

M,=27pb’Psin 2(7-/9) (51)

~-
B’

‘r- ‘

o

\f“ \
-,r{o~

\

\

.,
L ,.. -

~GUEE18.—~09htig the ~ rnume of an afrfefl (ax= and liftwtmle of the R. A. F.19eMnII)

the sine of twice the angle of attack with respect to It has thus been shown that with eve~ airfoil pro- ~
the second &p. file there is associated a point F for which the moment

From equation (47) we note that the moment at any is independent of the angle of attack. A change in
point Q w~ose raiw” vector horn M is re~, is given by I lift for-& resultiw from 8 change in angle of attack

.M~E2mpb’Psin 2(a-t T)-Zr cos (a-l-u).

Let us determine wh@her there exist particular
values of r and u for which A& is independent of the
angle of attack a. Writing for L its value given by
equation (45),

MQ=2rp&V2 Sill2(a + 7)–4@rP Sin(a+ ~) COs(a+ u)

And separating this trigonometrically
&f*= 2rpVs[(h’ cos 27– Rr cos (/3+ u)) sin 2a

+(P sin 27–Rr sin (B+u)) cos2a
-R?’ Sin(/9–u)]

distributes itself ~ that its mom-mt abou~ F iEzero.
From equation (47) it maybe noted that at zero lift

(i. e., a= – P) the airfoil is subject to a moment couple
which is, in fact, equal to A&. This momaut is often
termed “diving moment” or “moment for zero lift.”
II M= is zero, the resultant lift force must pass through
F for all angles of attack and we thus have the state-
ment that the airfoil has a constant center of pressure,
if and onIy if, the moment for zero lift is zero.

The point F, denoted by von Mises as the focus of
th~ airfoil, will be seen to have other interesting prop-
erhes. We note here thnt its construction is very
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simple. It lies at a distance ~ from ilfon a line making

angle 27 —B with rwpect to the z axis. From Figure
1S we see that the angle between this line and the first
axis is bisected by the second axis.

The arm hr from 1’ onto the resultant lift vector L
(h. is designated FT in Figure 1S; note also that 1 T,
being perpendicular to L, must be parallel to the direc-
tion of flow; the line TV is drawn parallel to the first
axis and therefore angle VTF- a + /3)is obtained as

–b’ sin 2(/3-’y)h,=!$= 92 Sin(a+B)

or setting h=&in2(B-7)

h.= – -
h

sm(a+ /3)
(52)

But h~is parallel to the direction of a, and the relation
h Y – h. sin (a+ P) states then that the projection of
hF onto the line @rough F perpendicular to the first
axis is equal to the constant h (h is designated FV in
the figure) for all angles of attack. In other words,
the pedal points T dekrmined by the intersection of
hF and L for u.Upositions of the lift vector L lie on a
straight line. (The line is determined by T and V in
fig. 18.) The parabola is the only curve having the
property that pedal points of the perpendiculars
dropped from its focus onto any tangent lie on a
straight @e, that line being the tangent at the vertex.
This may be ahown analytically by noting that the
equation of L for a coordinate system having F as
origin and FV as negative x axis is

h
~tial+ycosal=hr==— .

Sm(a-f- /3)

By differentiating with respect to al= a+ B and elim-
inating al we get the equation of the curve which the
lines L envelop as @=ti(z+h). From triangle FViS
in Figure 1S, it may be seen that the distance

MF=~’ “ “ -~ IS bwcted at S by the line ~ for, since

=~ &2(y—@ andangle FSV=2(P-7), then“h 2R

~F=2~. It has thus been shown that the resultant lift

veotans envelop, in general, a parabola whose focus is
at F and whose directrix is the first axis. The second
axis and its perpendicular at M, itmay be noted, are
also tangents to the parabola being, by definition, the

resultant lift vectors for a= —~ and a= ~ — ~, respec-

tively.
If the constant h reduces to zero, the lift vectors

reduce to a pencil of lines through F. Thus a constant
center of pressure is given by h= O or sin 2 (S– -Y)= O
which is equivalent to stating that the iirst and second
axes caincide. The lift pmabola opens downward
when the iirst axis is above the second axis (P> Y); it
reduces to a pencil of lines when the two axes are.
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coincident (p= Y) and opens upward when the second
axis is above the first (/?<7).

W. Miiller n introduced a third axis which has some
interesting properties. Defining the complex coordi-
nate ~. as the centroid of the circulation by

()
‘~ dj-. ‘tO= { d~

and using equations (25) and (32) one obtains

ro–cl=%+iyo
where

%=2 ~ ~a+p) [E a a+~s~ (a+2y)l

1

(63)
1

‘0=29i11’(a+ /3)[R cos a–~cos (a+2y)]

The equation of the lift vector lima referred to the
origin at M and x axis drawn through M is

b’ Sin (a+ y)

‘ms a–yti a=2RSin (a+~)
(64)

and it may be seen that the point (%, yo) satisfies this
equation. The centroid of the circulation then lies on
the lift vectors. By elimination of a from equation
(53) one iinds as the locus of (~, yo)

2%[R cm &:COS (~– 27)]+ 21/OIRsin @
(55)

+;shl (/9-27)] =E–g

which is the equation of a line, the third axis, and
proves to be a tangent to the lift parabola, Geome&
rically, it is the perpendicular bisector of the line I’F’
joining the focus to the point of intersection of the
first axis with the circle. @’ig. 1S.)

The conformal oentroid of the oontour,-It has
already been seen that the point M has special inter-
esting propertk. The transformation from the air-
foil to the circle having .&f as center was expressed in
the normal form and permitted of a very small c(q)
curve. (See p. 1S8.) It was also shown that tho
moment with respect to M is simply proportional to
the sine of twice the ar@e of attack with respect to
the second axis. We may note, too, that in the pres-
entation of this report tho coordinate of M, t= c1

R 2U
=={ +e~dp, is a function only of the first harmonic

of the +(P) curve.
We shall now obtain a significmt property of M o

invariant with respect to the transformation from air-
foil to circle. We start with the evaluation of the
integnd

{Jl~ ds

= Ref@mnm 7, P. 109. Abe Z& fflr Ans. Math. u Mwh. Bd. 3 S. 117, ID!&%
AfrfofIs having the same Crstj second, and third axes are ellke thenmtfmlly in

total lfftprexoa end fdsefntrevel of thecanterof~ 1. e., they have the

same lfft Mrebeln.
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where A is the airfoil contour, ds the differential of

arc along A., and & as will be recalled, is the magn.i-d~ ‘
fication factor of the transformation ~=j(z) mapping
airfoil into circle; i. e., each element & of .4 when

m%gfied by ~t gives W’ the differential of arc in the

plane of the circle, i. e., ldzl. Then we have,

=2z Rc,

(56)

The point M of the airfoil isthus the conformal cen-
troid-obtained’ by giving each element of the contour
a weight equal to the rnagniiication of that element,
which results when the airfoil is transformed into a
circle, the region at infinity being unaltered. It lies
within any convex region enclosing the airfoil contour.a

ARBITRARYAIRFOILSAND THEIR RELATIONTO
SPECIALTYPES

The total lift and moment experienced by the air-
foil have been seen to depend on but a few parameters
of the airfoil shape. The resultant lift force is com-
pletely determined for a particular angle of attack by
only the radius R and the angle of zero lift /3. The
moment about the origin depends, in addition, on the
complex ccmkants c1 and al or, what is the same, on
the position of the conformal centroid M and the focus
l’. The constants c1and al were also shown (see fook
note 20) to depend only on the first and second har-
monica of the e(p) curve. Before studying these
parameters for the caae of the arbitrary airfoil, it will
be instructive to begin with special airfoils and treat
these from the point of view of the “ conformal anguku
distortion” [e(p)] curve.

Flow about the straight line or flat plate.—As a
tit approximation to the theory of actual airfoils,
there is the one which considers the airfoil section to
be a straight line. It has been seen that the hue o~
length 4a is obtained by transforming a circle of radiu:

2
a, center at the origin, by .?= z+ ~ . The region ex-

n Of. P. Frank and E. Lowm, Math. 2s. Bd. & S. 7& 1919. Also refaence IS

p. 146,

arnal to the line 4CLin the ~ plane maps uniquely into
he region external to the circle IzI= a. A point Q of
ihe line corresponding to a point P at ae” is obtained
)y simply adding the vectors a(e” + e-~ or completing
ihe parallelogram OPQP’.

For ~= O,we have from equation (6)
x=2acosh + cos 0=2accs 8
Y=2a@#&o=0

I’hen the parameters for this case are R= a, /3=O,
zl=a’ (i. e., b=a, 7=0), and M is at the origin O.
I’aking the Kutta assumption for deterrnining the
irculation we have,

the circulation, I’=4mZVSill a

the lift, L=4n-apPtia
moment about fM, M’= 2mz2pV“sin2a 1(57)

position of F is at ZF = c1+ ei~fl = a; I
Since p = y, we bow that the travel of the center of
pwsw.re vanishes and that the center of pressure is at

PIGIJEE19.

For at on-fourth the length of the line from the lead-
ing edge. The complex flow potential for this case is

w~) = – Wz&)ei”+— ‘r log Z@) (58)Q’z e–k]+ ~T
Z&)

where z(f-)= ~ &
d( )

;’ —a2is the inveme of equation

(5). Since #(q) = .(Pj = 0 for thb ca9e, equation (39)
giving the veloci~ at the surface reduces to

()
[1

Sill ‘+a2V=v for r= 4mzV sin a,
sin ~2

(- )and by equation (41) o= V * for r=O.

Flow about the elliptic cylinder.-If equation (5)
is applied to a circle with center at the origin and
radius ae~, the ellipse (fig. 19)

is obtained in the ~ plane and the region external to
this ellipse is mapped uniquely into the region external
to the circle. The same transformation also trans-
forms this external region into the region internal to
the i.nvemecircle, radius m-~. We note that a point
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Q of the ellipse corresponding ta P at ae~~ is
obtained by airnply completing the parallelogram
OpQp’ (@. 19) where P’ now terminate on the circle
ae-~. The parameters are obtained as B-d, 9= O,
al- ag,M is at the origin O. Then, assuming the rem
stagnation point at the end of the major axis,

Siice /3= y, the point I’ is the center of pressure for all
angles of attack and is located at z~= m-~ from O or a
distance ad from the leading edge. The quantity

represents the ratio of the distance of F from the
leading edge to the major diameter of the ellipse.

The comrJex flow Dotential is identical with that
given by e&ation (5~) for the flat plate, except that
the quantity az in the numerator of the second tmm is
replaced by the constant aad~. Site 4(P)= constant,
e(q) = O and equation (39) giving the velocity at each
point of the surface for a stagnation point at end of
major axis becomes

.=~a (P+a)+fi a]et”
Smh ~#+ Si@O

(59)

and for zero circulation by equation (41)

(59’)

Circular arc sections.-It has been shown that

the transformation ~= z+; applied to a circle with

center at z= Oand radius a gi-ms a straight line in the
~ plane, and when applied to a circle with center z= O
and radius different horn a gives an ellipse in the ~
plane. We now show that if it is used to transform a
circle with center at z-is (s being a real number) and
ra’lius ~~, a circuhr arc results. The coordinates
of the transform of the circle C in the ~ plane are given
by equation (6) as

x=2izcosh$coso
y=%sinh$ sine

A relation between x and o can be readily obtained.
In right triangle OMD (fig. 20), 0M=8, angle 0i14D= e,
and recalling that the product of segments of any
chord through O is equal to as, OD = % (OP – OP1)=
a(e+–e-~)

2 =asinh#. Thenssin8=a sinh#, andfmm

the equation for y, y= 28sinf8. Eliminating both 8and
X in equation (6) we get

‘+(’+6-9W=?’ ’60)

CO~ FOR A13RONAUTICS

the equation of a circle; but since y cm have only
positive values, we are limited to a circular are. In
fact, as the point P in Figure 20 moves from A’ to A
on the circle, the point Q traverses the arc Al’ AI and
as P completes the circuit AA’ the arc is travenmd in
the opposite direction. & in the previous casea, we
note that the point Q cmraspondiqg to either ~ or to
the inveme and reilectad point P’ is obtained by com-
pleting the pmdlalogram OPQP’. We may also note

A-K”==’”+”

! ,/
,
#’,#,

,“ :

1/”
l,’

1’
;
,’
M’

~CWEE 20.-The drcnler em akfoil

that had the arc &4,’ been preassigned with the
requirement of tiramfonning it into the circle, the most
convenient choice of origin of coordinates would be
the midpoint of the line, length 4a, joining the end
points. The curve B then rem.dtingfrom using trans-
formation (5) would be a circle in the z’ plane, center
at z’ =ti, and the theory developed in the report could
be directly applied to this continuous closed B curve.

‘\ ,.~.
-—-------”’

FIOURE 2L—Dkontfnaone B curve

Had another axis and origin been chosen,
Figure 21, the B curve resulting would
discontinuities at A. and A’, although the arc AA’ is
still obtained by completing the parallelogram OPQP’.

The parametem of the arc A,A,’ of chord length 4a,
and mr&num height 28 me then, ~ M~~-

e. g., 8s in
have ii.nite

/?= tan-~” The focus F may be constructed by

erecting a perpendicular to the chord at A’ of length s
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and projecting its extremity on ikf~’. The center M’
of the arc also lies on this line.

The infinite sheet having the circular arc as cross
section contains as a special caze the flat plate, and
thus permits of a better approximation to the mean
camber line of actual airfoils. The complex flow poten-
tial and the formulas for the velocity at the surface
for the circular arc ar8 of the same form as those
given in the next section for the Joukowsky airfoil,
where also a simple geometric interpretation of the
parameter e and 4 are given.

Joukowsky airfoils.-If equation (5) is applied to
a circle with center at z =s, s being a real number, and
with radius 1?= a+s, a symmetrical Joukowsky air-
foil (or strut form) is obtained. The general Joukow-
sky airfoil is obtained when the transformation

~-z+% is applied to a circle O passing through the

poiilt z= - a and containing z= a (near the circum-
ference usually), and whose center M iz not limited to
either the z or y rGWS,but may be on a line OM inclined
to the axes. (Fig. 22.) The parametric equations of
the shape are as before

z=2acosb *COS81 (6)
y=2asinh+sin0

Geometrically a point Q of the airfoil is obtained by
adding the vecters ae~” and m+~ or by completing
the parallelogram OPQP’ as before, but now P’ lies on
another circle B’ defined aq z G=a@-o, the inveme
and reflected circle of B with respect to the circle of
radius a at the origin (obtained by the transformation
of ,reciprocal radii and subsequent reflection in the z
axis). Thus OP. OP’ = aa for all positiona of P, and
OP’ is readily constructed. The center M, of the
circle B’ may be located on the line W by drawing
OM, symmetrically h OM with respect to the y w&.
Let the coordinate of M be ~=i.s-l- dew, where d, s,
and # are real quantities. The circle of radius a, with
center iW at z = h, is transformed into a circular m
through &41’ which may be considered the merm
camber line of the airfoil. At the tail the JoukowE@
airfoil haa a cusp and the upper and lower surfaces
include a zero angle. The lift parametem are

~-O. Since Y= O,the second axis has the direction of
the x axis. The focus I’ is determined by laying off

the segment MF=$ on the line MA’. This quantity,

it may be noted, is obtained easily by the following
construction. In triangle iMDO’, MD==R, MO’ and
MO me made equal to a, then CT drawn parallel to

~z

DC1 determines MFER” The lift parabola may be

now determined uniquely sinca its directrix AM and
focus 1’ are known.

It maybe observed that if it is desired to transform
a preassigned Joukows& protie into a circle, there
mists a choice of &s and. origin for the airfoil such
that the inverse of transformation (5) will map the
&oil directly into a circle. This axis is very approx-
imately given by designating the tail as (– 2a, O) and
the point midway between the leading edge and the
center of curvature of the leading edge as (+ 2a, O) the
origin then bisecting the line joining these points.

FIGURE Z2.-The JOOkOWSkY alrfofl

The complex potential flow function for the Jou-
kowslg ail’’fOflis

W@= –
[ 1

V .g@eti+m*ti +glogg(r) (61)

where

By equation (39) we have for the velocity at the
surface

)V[Si.n(a+p) +zh(a+@](l+~ e~
v=

( 7$03
(Sinh ‘*+sill’e) 1+

This formula was obtained by transforming the’flow
around Ointo that around B and then into that around
4.. Since we know that B is itself a circle for this
case, we can simply u9e the 1att8rtwo transformations
alone.
We get

V[sin (a+q)+sin (a+/3)]e*v-
.&& ‘*+ti9e

(62}

That these formulas are equivalent is immediately
evident since the quantity

,$0-, ,+g()
=“

is uuity being the ratio of the magnification of each
arc element of (? to that of B. (See eq. (37).)
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A very simple geometrical picture of the parameters
c and ~, exists for the cases discussed. In Figure
23 the value of e or q– 0 at the point ~ is simply

B

c

Ram 23.-OemmeMcal represanbtlon of e and #

fw Joukoweky afrfdls

angle OPM, i. e., the angle subtended at P by the
origin O and the center M. The angle of zero lift is
the value of c for i3=r; i. e , efill=fl=021W. In
particular, we may note that e= O at 6’ and S, which
are on the straight line OM. Consider the triangle

OMP, where OP= u@, il@=R= ae~, CM=~ P, Wle

OPM=E; also, MOX=8, MOP=e–8, OMP=T–
(W–3). Then by the law of cosines, we have’

&-W =1+ 2p Cos(p–a) + p’
or

+–h=;log (1+2p Cos(p–a) +fi (63)

- ; (–1)~-l Cos n(p —op.
n

and by the law of sines

or

1 p Sin(lp-a)6($0)=tm.n- l+p @ls(gY-q

sin ?@-a)pn- S(— 1)=-1
1 n (64)

We see that, as required, the expressionsfor the “radial
distortion” +(p) and the “angular distortion” ~(p)
me conjugate Fourier series and may be expressed as
a single complex quantity

=log [1+ pe-’~-o]

It is evident also that the coefficient for n51 or the
“fit harmonic term” is simply pe” and a translation
by this qurtntity bringg the circle C into coticidence
with B as was pointed out on page 187.

invariant to the choice of origin O, as long aa O is
within B. We have

( )‘2:7#0+~ (–l)x-’ cog ‘(q–a) ~n dP=#o
1 n

l?m- 2%-TM Jonkow@y akfofl P= I).1O, 8-46”

Figure 24 shows the Joukowwky airfoil doiined by
p= 0.10 and 6=45°, and Figure 25 shows the T(0),
+(w), z(o), ~d C(P)curves for this airfoil.

.2,
I I I I I I

.1

0

-. /
.20

.15

.10

.05
~.~~ —Y,lY/ I ,,

0 I I I Ill ...

- . --’
.

1,-d-tH—H+
.,” —

0 2X

Fmm !E-Thea(6j and ?@)mrvesfor the rdrfoll In Figure 24

Arbitrary seotions.-In order to obtain the lift
parameters of an arbiimry airfoil, a convenient choice
of coordinate axes is first made as indicated for the
Jonkowslrr airfoil and m stated previously. (l&e 181.)
The curve resulting from the use of transformation (5)
will yield an arbitrary curve at+ti which will, in
general, differ very Iittla ~rom a circle. The inverse
and reflected curve W-*@ will also be almost circular.
The transition from the curve ue~w to a circle is
reached by obtaining the solution C(P) of equation
(13). The method of obtaining this solution as
already given converges with extreme rapidity for
learly circular curves.
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The geometrical picture is analogous to that given
for the special cases. In Figure 26 it may be seen that
a point Q on the airfoil (N. A. C. A. -M6) corre-

B

i
\
‘,
‘.
‘.
~.-..-—--/

FI13unE M!.-The N. A. O. A.–M6 airfofi

spending to P on the B curve (or ~’ on the B’ curve)
is obtained by constructing parallelogram OPQP’.
The F(o) and z(6) curves are shown in l?igure 27 for
this airfoil. The complex velocity potential and the
expression for velocity at the surface are given respec-
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The method used for arbitrary airfoils is readily
applied to arbitrrwy thin arcs or to broken lines such
as the sections of tail surfaces form approximately. In
Figure 26 the part of the airfoil boundary above the z
axis transforms by equation (5) into the two discon-
tinuous arcs shown by full lines, while the 10WW
boundary transforms into the arcs shown by dashed
lines. If the upper boundary surface is alone given
(thin airfoil) we may- obtain a closed curve ae~~ only
by joining the end points by a chord of length 4a and
choosing the origin at its midpoint.” The resulting
curve has two double points for which the first deriva-
tive is not uniquely defined and, in general, it may be
seen that intinite velocities correspond to such points.

At a point of the T(8) curve corresponding to a
mathematically sharp corner, there exist two tangents,

‘T(o) is fi~ly discontinuous.that is, the slope —
de

The

P

B-ItII
.1

0 .5

.?

I ‘+’4-7(!+” I I I I I I
/

I I I Iu I 1~ “

4 4.5 5 5.5
7

6 27rI 1.5 2 2.5 3 h 3.5
Nose Upper surface Jail Lower surface

e
A&e

~GUBB Z7.-Tba 8(L9)and ?(0) eurms for the N. A. O. A.–M6 airfoff

tively by equations (33) and (39). The lift param-
eters are

~=d~)~=,.ail (at 0-r),Mis atz-cl= ~ ~ +(q)e~dq

and Fis at z-cl+; where% is given in equation (25’).

The first and second mmsfor the N. A: C. A. –M6
airfoil are found to coincide and this airfoil has then a
constant center of pressure at F. Figures 28 (a) to
28 (1)give the pressure distribution (along the z axis)
for a series of angles of attack as calculated by this
theory and as obtained by experiment.24 Table I
contains the essential numerical data for this airfoil.

~1Theaantal~ltsara takenfrom&iNo.m oftheN.A.O.A.varfabfe
densitywind~ei. The@&ofattaokE.wbstitntiin~nation(30)b km
modfoederbltrarfiytotakea.xenntoftheM- ofSuitee, ti-ti intar-
(mnce,andviamfty,byrlmu&witnothattbethmreticalffftisabent10 H cant
more than the cmrespmding amadmonkal value. The actual values of the lit%

c.xdlidents are given fn the flgnma

4ol’os-~14

curve ?(0) must have an infinite slope at such a point
for according to a theorem in the theory of Fourier
series, at a point of discontinuity of a 1?. S., the con-
jugate F. S. is properly divergent. This manifests
itself in the velocity-formula equation (39) in the fac-

()
tor 1+% which is infinite at these sharp corners.

For practical purposw, however, a rounding of the
sharp edge, however small, considerably altersthe slope

‘3 at tlis point.
de

Ideal angle of attack.-A thin airfoil, represented
by a line arc, has both a sharp leading edge and a
sharp trailing edge. The Kutta assumption for fixing
the circulation places a stagnation point at the tail for
all angles of attack. At the leading edge, however,

UNotothat~(e+r)- –7(0)forti ~
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the velocity is infinite at all angles of attack except
one, namely, that angle for which the other stagnation
point is at the leading edge. It ia natural to expect
that for this angle of attack in actual cases the fric-
tional losses are at or near a minimum and thus arises
the concept of “ideal” angle of attack introduced by
Theodomen (reference 8) and which has also been
designated “angle of best stremnlining.” The defini-
tion for the ideal ar@e may be extended to thick
airfoils, as that angle for which a stagnation point
occurs directly at the foremost point of the mean
camber line.

The lift at the leading edge vanishes and the change
frem velocity to pressure along the airfoil surface is
usually more gradual than at any other angle of attack.

?hecretkul Eiper&rlfal
o L&w srrfae
x Loner surtbce

(Average Rh! =3x10~

E

COMMITTDE FOR AERONAUTICS

of this function, one can determine airfoil shapes of
definh properties. The C(P)function, which we hove
designated conformal angular @stortion function, will
be seen to determine not only the shape but also to
give easily all the theoretical aerodynamic character-
istics of the airfoil.

b mbitrru-y ~(q) curve is chosen, single valued, of

‘e <1.period 2T, of zero area, and such that – ms ~ _

These limiting valuesz of ~ are far beyond values

yielding airfoil shapes.n The x(p) function, except for
the constant 40, is given by the conjugate of the
Fourier expansion of c(q) or, what is the same, by
evaluating equation (14) as a deiinite integral, The

L’
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Gperimntal
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x Lower surfme

(Average R h! =3% 10~
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.

r a =9”
m

.- ar= /5”
1

~ = ~8°

L
ar=21”

1.0 G= I.16 G = I.ai 2.0
G=226

Fmwma ~ k to L—Thmretfmf and exrdmentd ~ dhtrfbntfon for the M6 efrfofl at vmiom angk of attaok

The minimum profile drag of airfoils actually occurs
very close to this angle. At the ideal angle, which we
denote by ar, the factor [sin (a+ p) + sin (a+ /3)] in
equation (39) is zero not ordy for 0= T or c= CT= 1?but
also for 0=0 or e=%. We get

ar+~N= —(ar+~~) or

(65)

CREATIONOF FAMILIESOF.-G SECCIONS

The process of transforming a circle inta au airfoil is
inherently less diflicult than the inverse process of
transforming an airfoil into a circle. By a direct appli-
cation of previous results we can derive a powerful and
flexible method for the creation of general famlies of
airfoi.Is. hstead of assuming that the Z(8) curve is
preassigned (that is, instead of a given airfoil), we
assume an arbitrary $(p) or e(p) curve rn as given.
This is equivalent to asmming as known a boundary-
value function along a circle and, by the proper choice

* fMbJect to some gmmal tictfom gfven fn the nest pxa2rnph.

constant 40 is an important arbitrary w parameter
which permits of charqp in the shape and for &certoin
range of values may determine the sharpness of the
trailing edge.

We iirst obtain the variable 8 as 8 (P)= q – .s(P), so
that the quantity # considered as a function of 0 is
~ (0)=x [p (0)]. The coordinates of the airfoil surface
are then

x=2a cosh + cos 0
(6)

y=2asinh #sin e.

}J <<0.20.~Forcummorralrfo~withnmoper~OICOOforfti,~~
ZIForcrImmanrdrfoflah Ktily btwa 0.05and0.15.Thecoutnuth In

nohhowever,compleblyerbitmry.wehaveu th8tthecondft!on@vonby
eurmtfnn(22)h@dwt toYfeldamnti fIWfromdoublemfnhinthetiplone.
weIUEYafsoAte theafterfrmthatthefnvemofwrrntfon(S)flprdfod10ttdn
corrtotrrW yfeldscontorrrfntherplanefrwfmmdouble@k. Considertha
fanatfonT(Ofor@v-g fromOb. o~y. ‘rhoneratfveofcaohVO.IUOO(?(0)In
W rmr~k-demd sciatedwith-0. i.e.,TSE%. Dote tbe~unotlon
thwfmm~from0-0to2. by~(@”.Then?(0”MPMSEIIk8IftIeamh tiof
p- f.e.,theupper mrfam of a contour. [% footnote 25.] Then for theontlm
mntonr b k frm from double rMfnts it fSne~ t~t tho 10wer EWfC@ ~O~d nob
mm tbe upw, thet f$ theortglmt ~(o) wrve for Overying from r to 2r must ❑ot
cross blow 7(0)”.
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The velocity at the surface is 29(h) to 29(t). In particular, the second harmonic
[sin (a+p)+sin (a+p)] e% term may yield ~ shapea, and by a proper combirwV=v

(Sinh‘++sin’ e)
[(’-%Y+(%YI ‘“)

tion of first and second harmonic terms, i. e., by a
proper choice of the ccnstanta Al, A2, 61,and &in the

and is obtained by using equation (37’) instead of (37) relation
in deriving (39). The angle of zero lift P is given by e(rf)=A~ sin (q–al) +Aj sin (2p–&J

p(0)= 8+ Z(13)for/3 -~, i. e., p(T)= 7f+& it is possible to & the focus F of the lift parabola as
The following figures and examples will make the the center of pressure for all angles of attack.n The

process clear. We may first note that the most natural equation
method of specifying the e (P) function is by a Fourier ~(q) =0.1 sin (9—60°) +0.05 CCS2P
series expansion. In this sense then the elementmy represents such an airfoil and is shown in Figure 29(u).
types of e (P) functions are the individual terms of The general process will yield iniinite varieties of
this expansion. 1 contours by superposition of ‘sine functions; in fact, if

—— .

–.

Consider fit the effect of the %rst harmonic term
e (q)=fll sin (P—&)> *O-C

In Figures 29(a) to 29(g) may be seen the shapes
resulting by displacing & successively by intervals of
15° and keeping the constants A,= 0.10 and #o= 0.10.
The first harmonic term is of chief influence in deter-
mining the airfoil shape. The case c (q)= 0.1 sin
(p -45°) is given detailed in Table H. (This airfoil
is remarkably similar to the commonly used C?larkY
airfoil.) The entire calculations are characterized by
their simplicity and, as may be noted, are completely
free from the necessity of any graphical evaluations or
constructions.

The effect of the second and higher harmonh aa
well as the constant #0 may be observed in Figures

the process is thought of as a boundary-value problem
of the circle, it is seen that it is aufliciently g&eral to
yield every closed curve for which Riemarm’s theorem
applies.

LANGLEY MBMORIAL AERONAUTICAL LABOIiATORY,

NATIONAL ADVISORY Co brhfTITED FOR &3R0NAuTICS,

LANGLEY <FIELD, ‘VA., ~ovember J, 1932.

n Tt&is&mmplMmdaa fcdlmm JVesdi to detwndne tbe condantsA1, Ai, h, and

&93 that by,whore y is obtained fmm WWMUOU (23’) as aI.b%tW=a2+c#cj and

we lW3y nota tbnt ~c&-AIc% and ~-~ These relatfcms are tmnmnndem-

M; hmvevm, wftb but a few Practfm trfr@ mlntimm mnlw obtahwf at wfll. Addf-

tiofu~fm~tild ti~~ktig~~emtirof~

proparti?s ff19 in kept Unoflmlgd.
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APPENDIX

1. EVALUATIONOF THR INTEGRAL.

(13)

dp (13’)

The function J@) is of period 2T and is considered
known. (Note that the variables P and W’ are re-
placed by 0 and d’, pl and PI’, ~ and q’, etc., in
equation (21) and that the following formula is
applicable for all these cases.)

A 20-point method for ewduating equation (13) as
a definite integral gives

●(9’)+ [
d#(P)
— +al(#l– 4.1) +%(#,– h)

Q d~

+ . . . . .
1

..+ %(*g–*-g) p-p, m

where

#l=value of y(p) at q= p’ + ~. -

. . . . . . .

#.=value of #(P) at q=p’+~

(n= I,–l, 2, –2, . . . . 9, –9).

and the constants % are as follows: GE:= 0.3142;

al=l.091; %=0.494; a2=0.313; ak=O.217; a5=0’.158;
~=0.l15; e= O.0884; %=0.0511; Ud %=0.0251.

This formula may be derived directly from the
definition of the deihite integral. The 20 intervals’

It is only necessary to note that by expanding ~(q) in
a Taylor series around P= p’ we get

where the interval P’—8 to p’ +s is small. And, in
general,

where the range @— n is small and #d is the werage
value of #(q) in tfi range. The constrmts a. for the
20 ditilons chosen above are actually

1
*r2n + 1

40q= log ~72n–l(n=–9j. . . +9)
40

As an example of the calculation of z(0) we may refer
to Table I and Figures 26 and 27 for the N. A. C. A.
– M6 airfoil. From the ~(tl) curve (fig. 27) we obtain

—
the 20 values of # and }~ for 20 equal intervals of &

For the airfoil (fig. 26) we get the following values:

WPW w (LOwer
13mrfaco) # z O mrface) 4

0 (noso) O. 192 0.000
11X
m

0.049

.186 .027
12W
m “067

192 .000
13X

. m “071

189 –. 030
14r

. m .077

.174 –. 064
16Z
m .079

.148 –. 095
16=
m’ .082

.110 –. 114
17X
iii

.000

.077 –. 086
18ZS
m , “111

.052 –. 066
191T
-m “160

.041 .025 2= (nom) .192

(y
de

– 0.002

.060

.030

.011

.000

. 016

. 039

.091

.164

. 000

z- (tail).056 .000

The value of e at the tail (i’. e., the angle of zero lift)
is, for example, US@ formula I

[
1 ~xoE=——
n- 10

+ 1.091(.049– .041)
-f-.494(.057– .052)
-1-.313(.071– .077)
+ .217(.077– .110)
+ .158(.079 – .146)
+ .115(.082– .174)
-1-.0884(.090– .189)
+.0511(.111–.192)
-1-.0251(.150– .185)] = .0105
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The value of c for 13=~> for example, is obtained by

a cyclic rearrangement. Thusj

L,=-~ ;(-.030)

-1-1.091(.174– .192)
+ .494(.146– .185)
+ .313(.110–.192) .
+ .217(.077– .150)
+.158(.052–.111)
+.115(.041–.090)
+ .0884(.055– .082)
+ .0511(.049– .079)
+ .0251(.057– .077)] = .0347

The 20 values obtained in this way form the q(d)
curve, which for all practical purposes for the airfoil
considered, is actually identical with the final t(13)
curve.

II. NOTES ON THE TRANSFORMATION.

r-j(z) =cl+z+:+~+ . . . (4’)

There exist a number of theorems giving general
limiting value9 for the coefficients of the transforma-
tion equation (4), which are interesting and to some
extent useful. If r =j(z) transforms the external
region of the circle c of radius 1? in the z plane, into
the external region of a contour A in the ~ plane in a
one-to-one conformal mamier and the Orieti ~= Olies
unlhin the contour ~ (and f’( ~ ) - 1) then the area f3
inclosed by A is given by the l?aber-Bieberbach
theorem as 2

Since all members of the above seriesterm are positive,
it is observed that the area of O is greater than that
inclosed by any contour A in the ~ plane (or, at most,
equal to the area inclosed by A if A is a circle).

This theorem leads to the following results

Let us designate the circle of radius .2?about the
conformal centroid M as center as ~ (i. e., the center
is at ~= c1; this circle has been called the “ Grund-
beis” or “basic” circle by von Misea). Then simx
IQ~ represents the distance of the focus 1’ from 34, the

relation (a) states that the focus is always within ~$
In fact, a further extension shows that if r~is the radim
of the largest circle that can be inclosed within A, then

F is removed from a by at least~g.

2 For detfdb of M and followhg sMemenk = mfemnm & P. lMI ud P. 147, u

ako I’eferenm & P’rt rI.
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From relation (b) may be derived thestatement that
f any circle within A is concentrically doubled in radiua
t is contained entirely within a circle about ill as
xmter of radius 212. Also, if we designate by c the
ar~t diameter of A (this is usuaUy the “chord” of
he airfoil) then the following &nits can be derived:

These inequalitica lead to interesting limits for the
ift coefficient. Writing the lift coefficient as

.

CL= &

Whereby equation (45) the lift force is given by

L=4mRpV2 sin (a+ /3)
we have

2Tsin(a+f?)scL -qsin(a+i?)simsin( a+ls) (II)

The flat plate is the only case where the lower
limit is reached, while the upper limit is attained for
the circular cylinder only. We may observe that a
curved thin plate has a lift coefficient which exceeds
27 sin (a+ p) by a very small amount. b general, the
thickness has a much greater effect on the value of
the lift coefficient than the camber. For common
airfoils the lift coe5cient is but slightly greater than
the lower limit and is approximately 1.1X 2T sin
(a+p).

Another theorem, similar to the l?aber-Bieberbach
area theorem, states that if the equation r =~(z) trans-
forms the internal region of a circle in the z plane into
the internal region of a contour B in the ~ plane in a
one-to-one conformal manner and~ (0)=1 (the origins
are within the contours) then the area of the circle is
less than that cmtained by any contour B. This
theorem, extended by Bieberbach, has been used in an
attempt to solve the arbitrary airfoil.3 The process
used is one in which the area theorem is a criterion as
b the direction in which the convergence proceeds.
Although theoretically sound, the process is, when
applied, extremely laborious and very slowly con-
vergent. It can not be said to have yielded as yet
really satisfactory remits.

III. LOCATIONOr THE CENTEROFPEESSUREFORAN
ARBITRARYAIRFOIL

It is of some inter~t to lmow the exact location of
the center of pressure on the z axia as a function of the
angle of attack. In l?igure 30, 0 is the origin, M the
conformal centroid, L the line of action of the lift
force for angle of attack a. Let us desiggta the

sMOller,iv.,& f.awm.ldatlLu.ldti lld.5S.397,19N.
HUhndorf,E.,Zs.f.~. hMb.n.&f@.Bd.8S.Z55,1528.
* ref2rmlca5,p.I&&
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intersection of L with the z &s of the airfoil as the
center of pre9sure ~.

In the right AONM we have,

OiM=c, =maa =Al +%,

ON=m cm 8=A,

.MN=m sin 6==B1

and in right AJKiU1KM=~J’E-#---

Then

and NP=KiVtan a=hxsec a–B1 ti a

By equation (48) “

Then the distance from the origin h the center of
prcwsureP is

/

Lifivecfor

M

L
o N

A

FIWJEE W.-cater 0[pmerarelcathnlonthezaxb

EXPLANATIONOF THE TABLES

Table I gives the -ntial data for the transforma-
tion of the N. A. C. A. –M6 airfoil (shown in fig. 26)
into a circle, and yields readily the complete theoretical
aerodynamical charactwiatica. Columns (1) and (2)
define the airfoil surface in per cent chord; (3) and (4)
are the coordinates after choosing a convenient origin
(p. 181); (5) and (6) are obtained from equations (7)
and (8) of the report; (9) is the evaluation of equation
(13) (see Appendix); (10) and (11) are the slopes, ob-

COMW!ITEE FOR A13RONAUTICS

tained graphically, of the x against 0, and
o curves, respectively; (12) is given by

e SgainSt

. 2T
where xO=A J @ (P) dp and may be obtained graphi-2r ()-

tally or numerically; column (13) gives q-0+ c Tho
velocity w,for any angle of attack, is by equation (39)

O=V% [sin (a+~)+sin (a+~)]

and the pressure is given by equation (3). The angle
of zero lift fl is the value of c at the tail; i. e., the value
of efor O=T.

Table II gives numerical data for the inverse process
to that given in Table I; viz, the transformation of a
circle into an airfoil. (See fig. 29.) The function
c(p) =0.1 sin (P—450) and constant #o= 0.10 are
chosen for this case. Then #(w)= 0.1 cos (9–45°)
+0.10. It may be obsarved that columns (11) and
(12) giving the coordinates of the airfoil surface are
Dbtained from equations (6) of the report. Column
(13) is giV~ by

k=
&o

(Sinh ‘#+sin’tl)
[HWHl

md the velocity at the surface is by equation (39’)

1.

2.

3.

L.

5.

3.

7-

3.

J.

O=Vk [fin(a+fo)+ti (a+@)]
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TABLE I

N. A. C. A.—M6

UPPER SURFAOE

Pa cant
c

V&ty SInv

am
.0!66
.W41
.167
.275
. W7
.M7

%!
.967

L@31
.Wc3

:%!

:E
.aa

Zinhw

aom
.W1
.a342
.m64
.am
.0373
. mm
.Cw
.a?30
.0276
.0216
.0164
.0101

:%
. W16
.m

z

Zw
L=
LW4
L836
L734

i%
L2Z9
.826
.421
.017

–. Ss7
-. ml

-L 19.5
–L .&W
–L6U1
–z m

v t fo-e+i

0,

am
.07m
. U36
. m
.203
.231
.276
.W5

:%
.’233
.244
.186
.m

:E
.m

am
.217
.Z12
.447
.661
.twl
.763

ig
L?31
L671
L764
L 976
2203

:%
a 142

ag

.184

.187

. la

.192

.193

.lm

. 1s1

. la

.146

.124

. 10I

:E
.OiO
.M’5

–o. 0467
–. 0276
–. Oms
–. m
–. W16

.@l?a

. Om

. CQlo

.0549

. on7

.mcd

.W33

.U3al

:E
. Oilo
.0106

am
–: LO

.022

:E–.m
–. ml
–. w
–. awl
–. lIXI
–. lca
–. ml
–. m
–. w
–. cm

.m

&a%

g

%3
.W5
. m
.107
.aw
.m

–: E
–. 659
-. w
–. m

.–.027

u%’
3.?8s
2657
:K&9

L6@l
L 4E3
L224
L~
L M5
L 132
L 107

H%

Wz P

–1 37
10 62
16 41
254
31 31

z;
6423
69 11
327

1% %
118 B
131 19
1,$3 30
Ma !ia
151 36

LOWER SURFAOE

u%’
%
lm
L 764
L460

??%
LQ33
L Ml
LEO
L 211
L 370
L 70
2Wa

19. !$s

am
:&
.269
.342
.4ui
.626
.831

i!#
.053
.846
.646

:%
.m

o 2cui
L 76 L&M
Zxl L@M
2n L&36
Z.m LZ?4
3.24 LC33
a 47 L 481
3.62 Li29
%m .826
*W .421
&04 .017
3.82 –. m
3.48 -.761
2s3 –L 196

-L W9
kz -L ml
.23 –1 m

am
–. on
-. w
–. 110
-. m
–. 131
–. 140
–. 146
–. M3
–. 16s
–. 169
–. 164
–. MI
–. 114
-.072
-. 0i4

.m

~2 37
-16 21
–n 43
–!23 36
–36 B
40 24
-4844
–66 64
-5s39
–80 17
-91 69

–102 m
–114 66
–m 14
-144 16
–164 Ml
–179 24

0.0323
.0237
.0234
.0176
.0144
. Olm
.m
.m
.W70
.m
.Wri3

:E
.alm
.0135
.Wz6
.cmo

eL2&3 ~ ;~
& 076
&w .162
L856 .132
6.740 .lm
.&m
hwd :&H
hm .m

.Cc34
.kE
4.712 :E
4.618 .07&5
4.807 .076
4.074
3.7s9 :&
3.694 .Mo
x 142 .M.5

-o. on-i
–. 0761
–. w
–. CEK3
–. m
–. ml
–. 0n3
–. c@97
–. 0616
–. Cu21
–. m
–. mlo
–. mw
–. 0296
–. 0236
-.0140

. ola5

awl
. l=
. lea
. 1.Z3

am
:%

–. 010
.K@
.m

:%$
.626
.Wr3
.m
.010

–: 0L5
–. C57
–. C@7
–. cm
–. 052
–. a36
–. am
–. 01s

.019

.a36

.0i4

.Om

.Cm

–:%!–.0#1
–. cm
–. Ct27

TARLE II
8(F)-O.I * ($-m h-am d-w -0. W67-3” 47’

UPPER SURFAOE

IP

- W* “
. —

o U& ~~

1: .1746 -.0674
.2318 -. m

H .3491 -.0423
26 .4W3 -. a342
30 .6234 -.0260
36 . 61W -.0174
46 .7254
66 .9699 X%
70 L 2217
m :%4

H%! .0707
1% L 7463 . a319
110 L 9199 .Oaim
126 11817 .0as5
135 2X53 . mm

z elm .(?359
# 27826 .W
Im . a319
m :!% .0707

FLaans
ewe

I
tie k

:8%
4.Qm
%3.912
26421
24704
21892
L 9746
L&$@
L 47’Q3
L2259
L 21?3
L 1717
L 1686
L 17Ed

Hi%

H%?
4.cum
m 4411

.

1

L 0121 Q o121
1. W39

:M
:E . 0s76
.9411 .67X4
.m .a3s6
.85%3 .1034
.m .1174
.721a .1423
.6W4 .1616
.- . lm
.7336 .1777
. on6 .1711

–. Qz36 .1674
–. 26s3 .1331
–. 4m8 ; $202
–. 6361
-.8161 . Ml
–. m .CQ46
–. m . Olm
–. 8979 . ml

0.9976 0.0703
.s3s6 .1610
.0733 .TAW
.0518 .3u53
.8243 . X316
. &314 .4LU2
.8WS
.m :%%
.7071 .7071
.6878 .f@o
. 2a13 .9214
.!Z2M .9732

.9276
–:E .S967
–.2667 . 9&23
–. 4m4
–. 6323 :%H
–. Slzs .S312
–. W48 .42h9
–. m .2s33
–. 9976 .07a9

aa?G&

.2319

. 81L9

.3914

. 47a5

.64!25

.&m

.7864

. 942s
L lm4
L.?339
L ml
LWS4

%%
Z2M2
26214
2 m19

%%

43

;E
1752
=26
2667
3129

u:
640
6736
7643
8667
9618

Io4 49
119 X.2
12916
144 w
164 4s
1.% 19
17667

a u67
. 17ea
.1819
.lsea
. lW
.1940
. Pam
. 1$?-5
.m
. lW
. lm
. isle
.1707
.1674
.1423
.1174
. lm
.0741

:Z
.02’33

Q0707
.078’3
. a31’a

:%$!

:%
.Qms
. lm
.W@6

:%%
.0707
.0674
.0422
.0174

–:%
–. 0423
–. M74
–. 0707

L 0146
L 01~
L OIM
L 0176
L Ol&2
1. 01s3
1.0194
L 01E3
L ml
L 01%3
L 01S2
1, Ohm
L 0140
L 012i
L 0101

:E
LUF23
L ~17
L~
L~

I I
LOWER SURFAOE

0.1716 Q 9975
. Kim .8W9
.1691 .6967
. 16M . W7
. Mm .M!33
.1346 .9420
.1232 . 91u2
.1177 . me!
. N32 .7742
.a327 . e514
.0577
.0423 :E
.6293
.0181 –: TM
.W –. ml
. W16 –. 6604
.m –. m
.a134 –. m
.cm34 –. 96.?3
- Olsl –. m
.62?3 –. 6%5

-:
–lo
-16
-xl
-26
~g

46
-66
–m

:%
-1111
-110
-126
-136
-160
-lCQ
-lm
–W

-%%
–. 1746
-.2618
-.3491
-. w
-.6239
-. 61C0
-.7864
-. 96S9

-L 2217
-L 2W3
-L ~
–L 74B
–L 91W
–2 M17
-2 Z&a
–2 elm
-2 m
-2 m
-3. 1U6

o.07a3 L 0121
–. 0103 1.0134
–. Q3X 1. m
–. 1742 .99s3
–.2667 .97M
–.?367 .WM
–.4142 .9174
–.4931 .8i76
–.m .m
–.7687 .6W
–.9W .4263
,–.fl.$n .2337
–.S976
–.8931 –:?m
-.9s3 –.ml
–.am –.5504
–.7071 -.7on
–.4774 -.8787
–.3021 –.9533
–. 1187 -. S%4
+. 0706 -. 997Q

-a0707
-. 07ea
–. am
–. mea
–. 0w3
-. 0a4a
ya.&

-. Km
-. w
–. m
–. m19
–. 0707
-. &574
-.6423
-.0174

:%$!
.0423
.0674
.0707

0.0707
–. 0107
–. C9ia
–. 1762
–. !4685
-.3423
-. m
-.6124
-. @w
–. S814

–L 1211
–L 8144
–L ml
-L &.X!
-L S776
–2 1643
–2 3&m
-26439
-2 8%9
-3.0246
–3 2123

4i7
–6 18

–lo 2
–14 49
-Pa 37
–24 23
–29 21
–~ :;

-6448
–75 19
–S5 67

–% ?
-1241
–m o
–161 29
–102 26
42:8

a 1707 ~&m
.1643
.1674 .0574
. 16W .aYxl
.1423 .W23
.1342 .0342
.1269 .a269
.1174 .0174
. lm
.m –:%%
.m –. 0U3
.04m –. a574
.02m –. 0707
.0181 –. m19
.ImJ4 –. m
.0015 –. Qm6
.mca -. lm
.W -. Wh16
.m –. m
. Olm -. a319
.0Xr3 -.0707

.0707

.0766

. U319

.W

.m
X@&

.OXd

. Ioxl

.W

:&#
.0707
.0574
.0423
.0174

–:%%
–. 0423
–. 0674
–. Om7

o.Ola
–. cola
–. 0146
–. 0202
–. cBS5
–. 0162
-.0523
-.0677
–. 0334
–. 0527
–. a522
–. 0412
–. 0232
-. Olxl
-. m
–. mu

–:%
–. m
–. ml
+. CQ21

&39u
7. m

:E
%9226
3.1443
2e077
2.22m
L mm
L41&9
L 16Ml
L 07tS
L@22
L @70
LCB16
L 2134

; gy

a WI
n 4411I


